These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12782460)

  • 1. A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor.
    Hirano A; Wakabayashi M; Matsuno Y; Sugawara M
    Biosens Bioelectron; 2003 Aug; 18(8):973-83. PubMed ID: 12782460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods.
    Matsuno Y; Osono C; Hirano A; Sugawara M
    Anal Sci; 2004 Aug; 20(8):1217-21. PubMed ID: 15352514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar lipid bilayers containing gramicidin A as a molecular sensing system based on an integrated current.
    Nishio M; Shoji A; Sugawara M
    Anal Sci; 2012; 28(7):661-7. PubMed ID: 22790367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorometric immunoassay based on pH-sensitive dye-encapsulating liposomes and gramicidin channels.
    Horie M; Yanagisawa H; Sugawara M
    Anal Biochem; 2007 Oct; 369(2):192-201. PubMed ID: 17718997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S; Shirai O; Kitazumi Y; Kano K
    Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gramicidin-based biosensor: a functioning nano-machine.
    Cornell BA; Braach-Maksvytis VL; King LG; Osman PD; Raguse B; Wieczorek L; Pace RJ
    Novartis Found Symp; 1999; 225():231-49; discussion 249-54. PubMed ID: 10472059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of a tethered bilayer sensor containing gramicidin A ion channels.
    Monfared SM; Krishnamurthy V; Cornell B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1262-5. PubMed ID: 19964510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of avidin on channel kinetics of biotinylated gramicidin.
    Rokitskaya TI; Antonenko YN; Kotova EA; Anastasiadis A; Separovic F
    Biochemistry; 2000 Oct; 39(42):13053-8. PubMed ID: 11041871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monovalent and multivalent binding of streptavidin to biotinylated gramicidin affects the kinetic properties of the ion channel.
    Antonenko YN; Rokitskaya TI; Kotova EA; Agapov II; Tonevitsky AG
    Biochemistry (Mosc); 2004 Feb; 69(2):220-7. PubMed ID: 15000691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance.
    Mun S; Choi SJ
    Biosens Bioelectron; 2009 Apr; 24(8):2522-7. PubMed ID: 19201593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance analysis of phosphatidylcholine membranes modified with gramicidin D.
    Naumowicz M; Figaszewski Z
    Bioelectrochemistry; 2003 Oct; 61(1-2):21-7. PubMed ID: 14642906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers.
    Chernyshev A; Armstrong KM; Cukierman S
    Biophys J; 2003 Jan; 84(1):238-50. PubMed ID: 12524278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak nonlinearity of current-voltage characteristics of gramicidin D channels. Experiment, theory and application to the study of transmembrane transmission of information.
    Passechnik VI; Hianik T
    Gen Physiol Biophys; 1998 Mar; 17(1):51-69. PubMed ID: 9675556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem gramicidin channels cross-linked by streptavidin.
    Rokitskaya TI; Kotova EA; Antonenko YN
    J Gen Physiol; 2003 May; 121(5):463-76. PubMed ID: 12719486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.