BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1278294)

  • 21. Distal retinal pigment of the fiddler crab, Uca pugilator: release of the dark-adapting hormone by methionine enkephalin and FMRFamide.
    Kulkarni GK; Fingerman M
    Pigment Cell Res; 1987; 1(1):51-6. PubMed ID: 3507663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavior of chromatophores of the fiddler crab Uca pugilator and the dwarf crayfish Cambarellus shufeldti in response to synthetic Pandalus red pigment-concentrating hormone.
    Fingerman M
    Gen Comp Endocrinol; 1973 Jun; 20(3):589-92. PubMed ID: 4715241
    [No Abstract]   [Full Text] [Related]  

  • 23. EFFECTS OF OSMOTIC PRESSURE AND CATIONS ON THE RESPONSE OF THE MELANOPHORES IN THE FIDDLER CRAB, UCA PUGNAX, TO THE MELANIN-DISPERSING PRINCIPLE FROM THE SINUS GLAND.
    FINGERMAN M; MIYAWAKI M; OGURO C
    Gen Comp Endocrinol; 1963 Oct; 3():496-504. PubMed ID: 14071746
    [No Abstract]   [Full Text] [Related]  

  • 24. The effect of cytochalasin B on pigment dispersion and aggregation in perfused Xenopus laevis tailfin melanophores.
    Fisher M; Lyerla TA
    J Cell Physiol; 1974 Feb; 83(1):117-29. PubMed ID: 4360295
    [No Abstract]   [Full Text] [Related]  

  • 25. Receptor mechanisms in fish chromatophores--VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores.
    Fujii R; Oshima N; Miyashita Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(1):1-6. PubMed ID: 2861032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of 5-hydroxytryptamine depletors and monoamine oxidase inhibitors on color changes of the fiddler crab, Uca pugilator: further evidence in support of the hypothesis that 5-hydroxytryptamine controls the release of red pigment-dispersing hormone.
    Fingerman M; Fingerman SW
    Comp Biochem Physiol C Comp Pharmacol; 1975 Oct; 52(1):55-9. PubMed ID: 205
    [No Abstract]   [Full Text] [Related]  

  • 27. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.
    Gouveia GR; Lopes TM; Neves CA; Nery LE; Trindade GS
    Pigment Cell Res; 2004 Oct; 17(5):545-8. PubMed ID: 15357842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melanin concentrating hormone (MCH) control of chromatophores.
    Castrucci AM; Visconti MA; Hadley ME; Hruby VJ; Oshima N; Fujii R
    Prog Clin Biol Res; 1988; 256():547-57. PubMed ID: 3368500
    [No Abstract]   [Full Text] [Related]  

  • 29. Patterns of serum ecdysteroids during induced and uninduced proecdysis in the fiddler crab, Uca pugilator.
    Hopkins PM
    Gen Comp Endocrinol; 1983 Dec; 52(3):350-6. PubMed ID: 6667837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fiddler crabs (Uca spp.) as model hosts for laboratory infections of Hematodinium perezi.
    O'Leary PA; Shields JD
    J Invertebr Pathol; 2017 Feb; 143():11-17. PubMed ID: 27836683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule--and microfilament--disrupting drugs and melanosome migration in melanophores of Papiliochromis ramirezi (Cichlidae, Teleostei).
    Visconti MA; Castrucci AM
    An Acad Bras Cienc; 1985 Jun; 57(2):233-7. PubMed ID: 4096435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral sensitivity of four species of fiddler crabs (Uca pugnax, Uca pugilator, Uca vomeris and Uca tangeri) measured by in situ microspectrophotometry.
    Jordão JM; Cronin TW; Oliveira RF
    J Exp Biol; 2007 Feb; 210(Pt 3):447-53. PubMed ID: 17234614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system.
    Schliwa M; Bereiter-Hahn J
    Cell Tissue Res; 1975; 158(1):61-73. PubMed ID: 1149080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata.
    Granato FC; Tironi TS; Maciel FE; Rosa CE; Vargas MA; Nery LE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):313-9. PubMed ID: 15313485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C-terminal deletion analogs of a crustacean pigment-dispersing hormone.
    Riehm JP; Rao KR; Semmes OJ; Jorenby WH; Hintz MF; Zahnow CA
    Peptides; 1985; 6(6):1051-6. PubMed ID: 3841733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiology of the white chromatophores in the fiddler crab, Uca pugilator.
    Rao K; Fingerman M; Bartell CK
    Biol Bull; 1967 Dec; 133(3):606-17. PubMed ID: 6063996
    [No Abstract]   [Full Text] [Related]  

  • 37. Hormonal involvement in thermal acclimation in the fiddler crab Uca pugilator (Bosc). I. Effect of eyestalk extracts on whole animal respiration.
    Silverthorn SU
    Comp Biochem Physiol A Comp Physiol; 1975 Feb; 50(2):281-3. PubMed ID: 234332
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of cyclic AMP and cytochalasin B on tissue cultured melanophores of Xenopus laevis.
    Lyerla TA; Novales RR
    J Cell Physiol; 1972 Oct; 80(2):243-51. PubMed ID: 4344774
    [No Abstract]   [Full Text] [Related]  

  • 39. Effects of diflubenzuron (Dimilin) on survival, molting, and behavior of juvenile fiddler crabs, Uca pugilator.
    Cunningham PA; Myers LE
    Arch Environ Contam Toxicol; 1987 Nov; 16(6):745-52. PubMed ID: 3118824
    [No Abstract]   [Full Text] [Related]  

  • 40. Antagonism of the inhibitory effect of the polychlorinated biphenyl preparation, aroclor 1242, on color changes of the fiddler crab, Uca pugilator, by norepinephrine and drugs affecting noradrenergic neurotransmission.
    Hanumante MM; Fingerman SW; Fingerman M
    Bull Environ Contam Toxicol; 1981 Apr; 26(4):479-84. PubMed ID: 6263384
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.