BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 12783150)

  • 1. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
    Franklin DW; Burdet E; Osu R; Kawato M; Milner TE
    Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance control balances stability with metabolically costly muscle activation.
    Franklin DW; So U; Kawato M; Milner TE
    J Neurophysiol; 2004 Nov; 92(5):3097-105. PubMed ID: 15201309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endpoint stiffness of the arm is directionally tuned to instability in the environment.
    Franklin DW; Liaw G; Milner TE; Osu R; Burdet E; Kawato M
    J Neurosci; 2007 Jul; 27(29):7705-16. PubMed ID: 17634365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of internal dynamics models in limb movements depends on stability.
    Milner TE
    Exp Brain Res; 2004 Nov; 159(2):172-84. PubMed ID: 15243728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of geometry and joint stiffness to mechanical stability of the human arm.
    Milner TE
    Exp Brain Res; 2002 Apr; 143(4):515-9. PubMed ID: 11914798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer and durability of acquired patterns of human arm stiffness.
    Darainy M; Malfait N; Towhidkhah F; Ostry DJ
    Exp Brain Res; 2006 Apr; 170(2):227-37. PubMed ID: 16328279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.