BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12783227)

  • 1. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves.
    Hoeberichts FA; ten Have A; Woltering EJ
    Planta; 2003 Jul; 217(3):517-22. PubMed ID: 12783227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W; Wu F
    BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants.
    Chico JM; Raíces M; Téllez-Iñón MT; Ulloa RM
    Plant Physiol; 2002 Jan; 128(1):256-70. PubMed ID: 11788771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum).
    Harrak H; Azelmat S; Baker EN; Tabaeizadeh Z
    Genome; 2001 Jun; 44(3):368-74. PubMed ID: 11444695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tomato homologue of the human protein PIRIN is induced during programmed cell death.
    Orzaez D; de Jong AJ; Woltering EJ
    Plant Mol Biol; 2001 Jul; 46(4):459-68. PubMed ID: 11485202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea.
    Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM
    Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein.
    Schaller A; Ryan CA
    Plant Mol Biol; 1996 Aug; 31(5):1073-7. PubMed ID: 8843949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39.
    Harel YM; Mehari ZH; Rav-David D; Elad Y
    Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical evidence of key residues for the activation and autoprocessing of tomato type II metacaspase.
    Wen S; Ma QM; Zhang YL; Yang JP; Zhao GH; Fu DQ; Luo YB; Qu GQ
    FEBS Lett; 2013 Aug; 587(16):2517-22. PubMed ID: 23850889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence.
    Drake R; John I; Farrell A; Cooper W; Schuch W; Grierson D
    Plant Mol Biol; 1996 Feb; 30(4):755-67. PubMed ID: 8624407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense.
    van Esse HP; Van't Klooster JW; Bolton MD; Yadeta KA; van Baarlen P; Boeren S; Vervoort J; de Wit PJ; Thomma BP
    Plant Cell; 2008 Jul; 20(7):1948-63. PubMed ID: 18660430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of a grapevine Botrytis-responsive gene that has homology to the tobacco hypersensitivity-related hsr203J.
    Bézier A; Lambert B; Baillieul F
    J Exp Bot; 2002 Nov; 53(378):2279-80. PubMed ID: 12379797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis.
    Krüger J; Thomas CM; Golstein C; Dixon MS; Smoker M; Tang S; Mulder L; Jones JD
    Science; 2002 Apr; 296(5568):744-7. PubMed ID: 11976458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in gene expression during programmed cell death in tomato cell suspensions.
    Hoeberichts FA; Orzaez D; van der Plas LH; Woltering EJ
    Plant Mol Biol; 2001 Apr; 45(6):641-54. PubMed ID: 11430427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of the metacaspase gene family in tomato.
    Liu H; Liu J; Wei Y
    Biochem Biophys Res Commun; 2016 Oct; 479(3):523-529. PubMed ID: 27664707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on the Tomato Metacaspase Protein Interactions with Ca2+ by Spectroscopy and Molecular Probe].
    Wen S; Ma YX; Wu KS; Cui JT; Luo YB; Qu GQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1643-8. PubMed ID: 26601383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.