These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 12783227)
1. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Hoeberichts FA; ten Have A; Woltering EJ Planta; 2003 Jul; 217(3):517-22. PubMed ID: 12783227 [TBL] [Abstract][Full Text] [Related]
2. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. Jin W; Wu F BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487 [TBL] [Abstract][Full Text] [Related]
3. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Chico JM; Raíces M; Téllez-Iñón MT; Ulloa RM Plant Physiol; 2002 Jan; 128(1):256-70. PubMed ID: 11788771 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Harrak H; Azelmat S; Baker EN; Tabaeizadeh Z Genome; 2001 Jun; 44(3):368-74. PubMed ID: 11444695 [TBL] [Abstract][Full Text] [Related]
5. A tomato homologue of the human protein PIRIN is induced during programmed cell death. Orzaez D; de Jong AJ; Woltering EJ Plant Mol Biol; 2001 Jul; 46(4):459-68. PubMed ID: 11485202 [TBL] [Abstract][Full Text] [Related]
6. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615 [TBL] [Abstract][Full Text] [Related]
7. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112 [TBL] [Abstract][Full Text] [Related]
8. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
9. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Schaller A; Ryan CA Plant Mol Biol; 1996 Aug; 31(5):1073-7. PubMed ID: 8843949 [TBL] [Abstract][Full Text] [Related]
11. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM; Mehari ZH; Rav-David D; Elad Y Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252 [TBL] [Abstract][Full Text] [Related]
12. Biochemical evidence of key residues for the activation and autoprocessing of tomato type II metacaspase. Wen S; Ma QM; Zhang YL; Yang JP; Zhao GH; Fu DQ; Luo YB; Qu GQ FEBS Lett; 2013 Aug; 587(16):2517-22. PubMed ID: 23850889 [TBL] [Abstract][Full Text] [Related]
13. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Drake R; John I; Farrell A; Cooper W; Schuch W; Grierson D Plant Mol Biol; 1996 Feb; 30(4):755-67. PubMed ID: 8624407 [TBL] [Abstract][Full Text] [Related]
14. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. van Esse HP; Van't Klooster JW; Bolton MD; Yadeta KA; van Baarlen P; Boeren S; Vervoort J; de Wit PJ; Thomma BP Plant Cell; 2008 Jul; 20(7):1948-63. PubMed ID: 18660430 [TBL] [Abstract][Full Text] [Related]
15. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz J; ten Have A; van Kan JA Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587 [TBL] [Abstract][Full Text] [Related]
16. Cloning of a grapevine Botrytis-responsive gene that has homology to the tobacco hypersensitivity-related hsr203J. Bézier A; Lambert B; Baillieul F J Exp Bot; 2002 Nov; 53(378):2279-80. PubMed ID: 12379797 [TBL] [Abstract][Full Text] [Related]
17. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Krüger J; Thomas CM; Golstein C; Dixon MS; Smoker M; Tang S; Mulder L; Jones JD Science; 2002 Apr; 296(5568):744-7. PubMed ID: 11976458 [TBL] [Abstract][Full Text] [Related]
18. Changes in gene expression during programmed cell death in tomato cell suspensions. Hoeberichts FA; Orzaez D; van der Plas LH; Woltering EJ Plant Mol Biol; 2001 Apr; 45(6):641-54. PubMed ID: 11430427 [TBL] [Abstract][Full Text] [Related]
19. Identification and analysis of the metacaspase gene family in tomato. Liu H; Liu J; Wei Y Biochem Biophys Res Commun; 2016 Oct; 479(3):523-529. PubMed ID: 27664707 [TBL] [Abstract][Full Text] [Related]
20. [Research on the Tomato Metacaspase Protein Interactions with Ca2+ by Spectroscopy and Molecular Probe]. Wen S; Ma YX; Wu KS; Cui JT; Luo YB; Qu GQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1643-8. PubMed ID: 26601383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]