These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12783817)

  • 1. Characteristics and application of ceramic nanofiltration membranes.
    Weber R; Chmiel H; Mavrov V
    Ann N Y Acad Sci; 2003 Mar; 984():178-93. PubMed ID: 12783817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters.
    Cheng S; Oatley DL; Williams PM; Wright CJ
    Water Res; 2012 Jan; 46(1):33-42. PubMed ID: 22078250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.
    Cheng X; Li N; Zhu M; Zhang L; Deng Y; Deng C
    J Environ Sci (China); 2016 Jun; 44():204-212. PubMed ID: 27266317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of the results for the synthetic and actual reactive dye bath effluent treatment by nanofiltration membranes.
    Koyuncu I; Topacik D; Yuksel E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2209-18. PubMed ID: 14524675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale ceramic ultrafiltration/nanofiltration membrane system application for caustic recovery and reuse in textile sector.
    Ağtaş M; Yılmaz Ö; Dilaver M; Alp K; Koyuncu İ
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):41029-41038. PubMed ID: 33772717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on ceramic dual function membrane bioreactor for wastewater treatment].
    Zhang Y; Cheng Y; Shi Y; Shi H; Qian Y
    Huan Jing Ke Xue; 2002 Jul; 23(4):67-70. PubMed ID: 12371106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal.
    Ren X; Zhao C; Du S; Wang T; Luan Z; Wang J; Hou D
    J Environ Sci (China); 2010; 22(9):1335-41. PubMed ID: 21174963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.
    Kumar R; Pal P
    Water Environ Res; 2013 May; 85(5):447-55. PubMed ID: 23789574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.
    Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II
    Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes.
    Trebouet D; Schlumpf JP; Jaouen P; Quemeneur F
    Water Res; 2001 Aug; 35(12):2935-42. PubMed ID: 11471693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes.
    Karnik BS; Davies SH; Chen KC; Jaglowski DR; Baumann MJ; Masten SJ
    Water Res; 2005 Feb; 39(4):728-34. PubMed ID: 15707646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus removal using nanofiltration membranes.
    Leo CP; Chai WK; Mohammad AW; Qi Y; Hoedley AF; Chai SP
    Water Sci Technol; 2011; 64(1):199-205. PubMed ID: 22053475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment.
    Nghiem LD; Schäfer AI; Waite TD
    Water Sci Technol; 2002; 46(4-5):265-72. PubMed ID: 12361019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration.
    Gong YW; Zhang HX; Cheng XN
    Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane technology for the future treatment of paper mill effluents: chances and challenges of further system closure.
    Simstich B; Oeller HJ
    Water Sci Technol; 2010; 62(9):2190-7. PubMed ID: 21045349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.
    Chen Q; Yang Y; Zhou M; Liu M; Yu S; Gao C
    J Hazard Mater; 2015 Mar; 284():121-9. PubMed ID: 25463225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of an industrial ceramic nanofiltration unit for wastewater treatment in oil production.
    Cabrera SM; Winnubst L; Richter H; Voigt I; McCutcheon J; Nijmeijer A
    Water Res; 2022 Jul; 220():118593. PubMed ID: 35671683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oily wastewater treatment by adsorption-membrane filtration hybrid process using powdered activated carbon, natural zeolite powder and low cost ceramic membranes.
    Rasouli Y; Abbasi M; Hashemifard SA
    Water Sci Technol; 2017 Aug; 76(3-4):895-908. PubMed ID: 28799936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of clindamycin from fermentation wastewater with nanofiltration membranes.
    Zhu A; Zhu W; Wu Z; Jing Y
    Water Res; 2003 Sep; 37(15):3718-32. PubMed ID: 12867340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.