These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 1278422)
1. Conformation mobility within the structure of muscular parvalbumins. An NMR study of the aromatic resonances of phenylalanine residues. Cave A; Dobson CM; Parello J; Williams RJ FEBS Lett; 1976 Jun; 65(2):190-4. PubMed ID: 1278422 [No Abstract] [Full Text] [Related]
2. Investigation of some physico-chemical properties of muscular parvalbumins by means of the luminescence of their phenylalanyl residues. Burstein EA; Permyakov EA; Emelyanenko VI; Bushueva ; Pechère JF Biochim Biophys Acta; 1975 Jul; 400(1):1-16. PubMed ID: 238652 [TBL] [Abstract][Full Text] [Related]
3. 13C nuclear magnetic resonance study of molecular motions and conformational transitions in muscle calcium binding parvalbumins. Nelson DJ; Opella SJ; Jardetzky O Biochemistry; 1976 Dec; 15(25):5552-60. PubMed ID: 999828 [TBL] [Abstract][Full Text] [Related]
4. Non-equivalence of the CD and EF sites of muscular parvalbumins. A 113Cd NMR study. Drakenberg T; Lindman B; Cavé A; Parello J FEBS Lett; 1978 Aug; 92(2):346-50. PubMed ID: 29781 [No Abstract] [Full Text] [Related]
6. Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances. Lee L; Sykes BD Biochemistry; 1980 Jul; 19(14):3208-14. PubMed ID: 7407042 [TBL] [Abstract][Full Text] [Related]
7. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. Moews PC; Kretsinger RH J Mol Biol; 1975 Jan; 91(2):201-25. PubMed ID: 1237625 [No Abstract] [Full Text] [Related]
8. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Lee L; Sykes BD Biochemistry; 1983 Sep; 22(19):4366-73. PubMed ID: 6626506 [TBL] [Abstract][Full Text] [Related]
9. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin. Lee L; Sykes BD Biochemistry; 1981 Mar; 20(5):1156-62. PubMed ID: 7225322 [TBL] [Abstract][Full Text] [Related]
10. Mg2+ binding to parvalbumins studied by 25Mg and 113Cd NMR spectroscopy. Cave A; Parello J; Drakenberg T; Thulin E; Lindman B FEBS Lett; 1979 Apr; 100(1):148-52. PubMed ID: 437098 [No Abstract] [Full Text] [Related]
11. Conformational studies on muscular parvalbumins cooperative binding of calcium (II) to parvalbumins. Cave A; Pages M; Morin P; Dobson CM Biochimie; 1979; 61(5-6):607-13. PubMed ID: 497251 [TBL] [Abstract][Full Text] [Related]
12. 1H NMR spectroscopic studies of calcium-binding proteins. 2. Histidine microenvironments in alpha- and beta-parvalbumins as determined by protonation and laser photochemically induced dynamic nuclear polarization effects. Williams TC; Corson DC; McCubbin WD; Oikawa K; Kay CM; Sykes BD Biochemistry; 1986 Apr; 25(7):1826-34. PubMed ID: 3707913 [TBL] [Abstract][Full Text] [Related]
13. Nuclear-magnetic-resonance studies of eukaryotic cytochrome c. Assignment of resonances of aromatic amino acids. Moore GR; Williams RJ Eur J Biochem; 1980 Feb; 103(3):493-502. PubMed ID: 6244158 [TBL] [Abstract][Full Text] [Related]
14. Assignment of the aromatic 1H-NMR resonances of myotoxin a isolated from the venom of Crotalus viridis viridis. Henderson JT; Nieman RA; Bieber AL Biochim Biophys Acta; 1987 Aug; 914(2):152-61. PubMed ID: 3607069 [TBL] [Abstract][Full Text] [Related]
15. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin. Lee L; Sykes BD Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448 [TBL] [Abstract][Full Text] [Related]
16. Structural studies of calcium-binding proteins using nuclear magnetic resonance. Lee L; Corson DC; Sykes BD Biophys J; 1985 Feb; 47(2 Pt 1):139-42. PubMed ID: 3978195 [TBL] [Abstract][Full Text] [Related]
17. Nuclear magnetic resonance studies of the phenylalanine residues of eukaryotic cytochrome c. Boswell AP; Moore GR; Williams RJ; Chien JC; Dickinson LC J Inorg Biochem; 1980 Dec; 13(4):347-52. PubMed ID: 6257839 [TBL] [Abstract][Full Text] [Related]
18. The aromatic residues of bovine pancreatic ribonuclease studied by 1H nuclear magnetic resonance. Lenstra JA; Bolscher BG; Beintema JJ; Kaptein R Eur J Biochem; 1979 Aug; 98(2):385-97. PubMed ID: 39752 [TBL] [Abstract][Full Text] [Related]
19. 1H NMR spectroscopic studies of calcium-binding proteins. 1. Stepwise proteolysis of the C-terminal alpha-helix of a helix-loop-helix metal-binding domain. Corson DC; Williams TC; Kay LE; Sykes BD Biochemistry; 1986 Apr; 25(7):1817-26. PubMed ID: 3707912 [TBL] [Abstract][Full Text] [Related]
20. Proton magnetic resonance spectra of adrenodoxin: features of the aromatic region. Greenfield NJ; Wu XH; Jordan F Biochim Biophys Acta; 1989 May; 995(3):246-54. PubMed ID: 2706273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]