BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 12784646)

  • 1. Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2'-deoxyribonucleosides.
    Ogawa J; Saito K; Sakai T; Horinouchi N; Kawano T; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):933-6. PubMed ID: 12784646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot microbial synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase.
    Horinouchi N; Ogawa J; Kawano T; Sakai T; Saito K; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Biotechnol Lett; 2006 Jun; 28(12):877-81. PubMed ID: 16786272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.
    Horinouchi N; Ogawa J; Kawano T; Sakai T; Saito K; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):615-21. PubMed ID: 16283293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of deoxyriboaldolase-overexpressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2'-deoxyribonucleoside production.
    Horinouchi N; Ogawa J; Sakai T; Kawano T; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Appl Environ Microbiol; 2003 Jul; 69(7):3791-7. PubMed ID: 12839746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker's yeast and deoxyriboaldolase-expressing Escherichia coli.
    Horinouchi N; Ogawa J; Kawano T; Sakai T; Saito K; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Biosci Biotechnol Biochem; 2006 Jun; 70(6):1371-8. PubMed ID: 16794316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and characterization of a phosphopentomutase useful for enzymatic production of 2'-deoxyribonucleoside.
    Horinouchi N; Kawano T; Sakai T; Matsumoto S; Sasaki M; Mikami Y; Ogawa J; Shimizu S
    N Biotechnol; 2009 Oct; 26(1-2):75-82. PubMed ID: 19818317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic bypass of the triosephosphate isomerase reaction.
    Desai KK; Miller BG
    Biochemistry; 2008 Aug; 47(31):7983-5. PubMed ID: 18620424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of a new whole cell biocatalyst for the synthesis of 2-deoxyribose 5-phosphate.
    Valino AL; Palazzolo MA; Iribarren AM; Lewkowicz E
    Appl Biochem Biotechnol; 2012 Jan; 166(2):300-8. PubMed ID: 22057938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for the determination of intracellular levels of ribose phosphates.
    Camici M; Tozzi MG; Ipata PL
    J Biochem Biophys Methods; 2006 Oct; 68(3):145-54. PubMed ID: 16893570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of deoxyribose-5-phosphate aldolase of Bacillus cereus by deoxyribonucleosides.
    Tozzi MG; Sgarrella F; Barsacchi D; Ipata PL
    Biochem Int; 1984 Sep; 9(3):319-25. PubMed ID: 6439205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production.
    Sun S; Wang Y; Shu L; Lu X; Wang Q; Zhu C; Shi J; Lye GJ; Baganz F; Hao J
    Microb Cell Fact; 2021 Jun; 20(1):123. PubMed ID: 34187467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot two-step enzymatic coupling of pyrimidine bases to 2-deoxy-D-ribose-5-phosphate. A new strategy in the synthesis of stable isotope labeled deoxynucleosides.
    Ouwerkerk N; Steenweg M; de Ruijter M; Brouwer J; van Boom JH; Lugtenburg J; Raap J
    J Org Chem; 2002 Mar; 67(5):1480-9. PubMed ID: 11871876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-1-phosphate and PPi.
    McElwain MC; Pollack JD
    J Bacteriol; 1987 Aug; 169(8):3647-53. PubMed ID: 3038846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of chemo-enzymatic process and manufacture of deoxynucleosides.
    Komatsu H; Awano H; Ishibashi H; Ikeda I
    Nucleic Acids Res Suppl; 2001; (1):49-50. PubMed ID: 12836258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled biocatalysts applied to the synthesis of nucleosides.
    Medici R; Porro MT; Lewkowicz E; Montserrat J; Iribarren AM
    Nucleic Acids Symp Ser (Oxf); 2008; (52):541-2. PubMed ID: 18776493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE MECHANISM OF ACTION OF ALDOLASES. VII. FORMATION OF A 2-METHYL-2-DEOXYPENTOSE CATALYZED BY DEOXYRIBOSE 5-PHOSPHATE ALDOLASE.
    OSEN OM; HOFFEE P; HORECKER BL
    J Biol Chem; 1965 Apr; 240():1517-24. PubMed ID: 14285486
    [No Abstract]   [Full Text] [Related]  

  • 18. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates.
    Serianni AS; Pierce J; Barker R
    Biochemistry; 1979 Apr; 18(7):1192-9. PubMed ID: 218615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salvage of the 5-deoxyribose byproduct of radical SAM enzymes.
    Beaudoin GAW; Li Q; Folz J; Fiehn O; Goodsell JL; Angerhofer A; Bruner SD; Hanson AD
    Nat Commun; 2018 Aug; 9(1):3105. PubMed ID: 30082730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Demonstration of pyrimidine nucleoside phosphorylases in breast cancer].
    Malette P; Sampérez S; Jouan P
    C R Seances Soc Biol Fil; 1989; 183(2):101-7. PubMed ID: 2531018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.