BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12785506)

  • 1. Assessing TMDL effectiveness using flow-adjusted concentrations: a case study of the Neuse River, North Carolina.
    Stow CA; Borsuk ME
    Environ Sci Technol; 2003 May; 37(10):2043-50. PubMed ID: 12785506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of progress in achieving TMDL mandated nitrogen reductions in the Neuse River basin, North Carolina.
    Lebo ME; Paerl HW; Peierls BL
    Environ Manage; 2012 Jan; 49(1):253-66. PubMed ID: 22037617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the effects of nutrient management in an estuary experiencing climatic change: the Neuse River Estuary, North Carolina.
    Paerl HW; Valdes LM; Piehler MF; Stow CA
    Environ Manage; 2006 Mar; 37(3):422-36. PubMed ID: 16456630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin.
    Alameddine I; Qian SS; Reckhow KH
    Water Res; 2011 Jan; 45(1):51-62. PubMed ID: 20800259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina.
    Stow CA; Borsuk ME; Stanley DW
    Water Res; 2001 Apr; 35(6):1489-99. PubMed ID: 11317896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.
    Liang S; Jia H; Xu C; Xu T; Melching C
    Sci Total Environ; 2016 Aug; 560-561():44-54. PubMed ID: 27093122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina.
    Whitall D; Hendrickson B; Paerl H
    Environ Int; 2003 Jun; 29(2-3):393-9. PubMed ID: 12676232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of varying hydrologic regime on seasonal total maximum daily loads (TDML) in an agricultural watershed.
    Rai S; Jain S; Rallapalli S; Magner J; Singh AP; Goonetilleke A
    Water Res; 2024 Feb; 249():120998. PubMed ID: 38096723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient response modeling in Falls of the Neuse Reservoir.
    Lin J; Li J
    Environ Manage; 2011 Mar; 47(3):398-409. PubMed ID: 21308376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bivariate statistical model for calculating phosphorus input loads to the river from point and nonpoint sources].
    Chen DJ; Sun SY; Jia YN; Chen JB; Lü J
    Huan Jing Ke Xue; 2013 Jan; 34(1):84-90. PubMed ID: 23487922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction.
    Wang M; Strokal M; Burek P; Kroeze C; Ma L; Janssen ABG
    Sci Total Environ; 2019 May; 664():865-873. PubMed ID: 30769310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina.
    Paerl HW; Valdes LM; Joyner AR; Piehler MF; Lebo ME
    Environ Sci Technol; 2004 Jun; 38(11):3068-73. PubMed ID: 15224737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.
    Withers PJ; Jarvie HP; Stoate C
    Environ Int; 2011 Apr; 37(3):644-53. PubMed ID: 21277632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UK catchment nutrient loads 1993-2003, a new approach using harmonised monitoring scheme data: temporal changes, geographical distribution, limiting nutrients and loads to coastal waters.
    Earl TJ; Upton GJ; Nedwell DB
    Environ Sci Process Impacts; 2014 Jul; 16(7):1646-58. PubMed ID: 24691780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stream sediment and nutrient loads in the Tahoe Basin--estimated vs monitored loads for TMDL "crediting".
    Grismer ME
    Environ Monit Assess; 2013 Sep; 185(9):7883-94. PubMed ID: 23435852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.
    Wu Y; Liu S
    J Environ Monit; 2012 Sep; 14(9):2350-61. PubMed ID: 22790209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental response of an Irish estuary to changing land management practices.
    Ní Longphuirt S; O'Boyle S; Stengel DB
    Sci Total Environ; 2015 Jul; 521-522():388-99. PubMed ID: 25863317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].
    Xu HS; Xu ZX; Liu P
    Huan Jing Ke Xue; 2013 Mar; 34(3):882-91. PubMed ID: 23745390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M; Kroeze C; Wang M; Bai Z; Ma L
    Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.