These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 12785588)
1. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus. Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588 [TBL] [Abstract][Full Text] [Related]
2. Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from contaminated mine wastes. Langdon CJ; Piearce TG; Meharg AA; Semple KT Environ Toxicol Chem; 2001 Oct; 20(10):2336-41. PubMed ID: 11596768 [TBL] [Abstract][Full Text] [Related]
3. Arsenic-speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus. Langdon CJ; Meharg AA; Feldmann J; Balgar T; Charnock J; Farquhar M; Piearce TG; Semple KT; Cotter-Howells J J Environ Monit; 2002 Aug; 4(4):603-8. PubMed ID: 12196009 [TBL] [Abstract][Full Text] [Related]
4. Quantitative arsenic speciation in two species of earthworms from a former mine site. Watts MJ; Button M; Brewer TS; Jenkin GR; Harrington CF J Environ Monit; 2008 Jun; 10(6):753-9. PubMed ID: 18528543 [TBL] [Abstract][Full Text] [Related]
5. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
7. Earthworms and in vitro physiologically-based extraction tests: complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Button M; Watts MJ; Cave MR; Harrington CF; Jenkin GT Environ Geochem Health; 2009 Apr; 31(2):273-82. PubMed ID: 18958400 [TBL] [Abstract][Full Text] [Related]
8. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada. Button M; Koch I; Reimer KJ Environ Pollut; 2012 Oct; 169():74-80. PubMed ID: 22683483 [TBL] [Abstract][Full Text] [Related]
9. DNA damage in earthworms from highly contaminated soils: assessing resistance to arsenic toxicity by use of the Comet assay. Button M; Jenkin GR; Bowman KJ; Harrington CF; Brewer TS; Jones GD; Watts MJ Mutat Res; 2010 Feb; 696(2):95-100. PubMed ID: 20015476 [TBL] [Abstract][Full Text] [Related]
10. Inherited resistance to arsenate toxicity in two populations of Lumbricus rubellus. Langdon CJ; Piearce TG; Meharg AA; Semple KT Environ Toxicol Chem; 2003 Oct; 22(10):2344-8. PubMed ID: 14551998 [TBL] [Abstract][Full Text] [Related]
11. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens. Morgan AJ; Turner MP Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036 [TBL] [Abstract][Full Text] [Related]
12. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. Yang F; Xie S; Wei C; Liu J; Zhang H; Chen T; Zhang J Sci Total Environ; 2018 Jun; 626():77-86. PubMed ID: 29335176 [TBL] [Abstract][Full Text] [Related]
13. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil. Langdon CJ; Morgan AJ; Charnock JM; Semple KT; Lowe CN Environ Pollut; 2009 Nov; 157(11):3114-9. PubMed ID: 19501438 [TBL] [Abstract][Full Text] [Related]
14. A Cu tolerant population of the earthworm Dendrodrilus rubidus (Savigny, 1862) at Coniston Copper Mines, Cumbria, UK. Arnold RE; Hodson ME; Langdon CJ Environ Pollut; 2008 Apr; 152(3):713-22. PubMed ID: 17707108 [TBL] [Abstract][Full Text] [Related]
15. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris. Arnold RE; Hodson ME Environ Pollut; 2007 Jul; 148(1):21-30. PubMed ID: 17254685 [TBL] [Abstract][Full Text] [Related]
16. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
17. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Ernst G; Zimmermann S; Christie P; Frey B Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348 [TBL] [Abstract][Full Text] [Related]
18. Arsenic speciation in the bracket fungus Fomitopsis betulina from contaminated and pristine sites. Button M; Koch I; Watts MJ; Reimer KJ Environ Geochem Health; 2020 Sep; 42(9):2723-2732. PubMed ID: 31897873 [TBL] [Abstract][Full Text] [Related]
19. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus. Richardson JB; Görres JH; Friedland AJ Environ Sci Pollut Res Int; 2016 Sep; 23(18):18253-66. PubMed ID: 27272919 [TBL] [Abstract][Full Text] [Related]
20. Differences in the accumulated metal concentrations in two epigeic earthworm species (Lumbricus rubellus and Dendrodrilus rubidus) living in contaminated soils. Morgan JE; Morgan AJ Bull Environ Contam Toxicol; 1991 Aug; 47(2):296-301. PubMed ID: 1912707 [No Abstract] [Full Text] [Related] [Next] [New Search]