These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12785717)

  • 1. The emerging role for sphingolipids in the eukaryotic heat shock response.
    Jenkins GM
    Cell Mol Life Sci; 2003 Apr; 60(4):701-10. PubMed ID: 12785717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins.
    Jenkins GM; Cowart LA; Signorelli P; Pettus BJ; Chalfant CE; Hannun YA
    J Biol Chem; 2002 Nov; 277(45):42572-8. PubMed ID: 12200446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae.
    Jenkins GM; Hannun YA
    J Biol Chem; 2001 Mar; 276(11):8574-81. PubMed ID: 11056159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis.
    Wells GB; Dickson RC; Lester RL
    J Biol Chem; 1998 Mar; 273(13):7235-43. PubMed ID: 9516416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae.
    Jenkins GM; Richards A; Wahl T; Mao C; Obeid L; Hannun Y
    J Biol Chem; 1997 Dec; 272(51):32566-72. PubMed ID: 9405471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis.
    Cowart LA; Hannun YA
    J Biol Chem; 2007 Apr; 282(16):12330-40. PubMed ID: 17322298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.
    Murakami I; Wakasa Y; Yamashita S; Kurihara T; Zama K; Kobayashi N; Mizutani Y; Mitsutake S; Shigyo T; Igarashi Y
    Lipids Health Dis; 2011 Aug; 10():150. PubMed ID: 21861924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response.
    Mandala SM; Thornton R; Tu Z; Kurtz MB; Nickels J; Broach J; Menzeleev R; Spiegel S
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):150-5. PubMed ID: 9419344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae.
    Meier KD; Deloche O; Kajiwara K; Funato K; Riezman H
    Mol Biol Cell; 2006 Mar; 17(3):1164-75. PubMed ID: 16381812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae.
    Dickson RC; Lester RL
    Biochim Biophys Acta; 1999 Jun; 1438(3):305-21. PubMed ID: 10366774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the sphingolipid ceramide in heat-shock-induced apoptosis of bovine oocytes.
    Kalo D; Roth Z
    Reprod Fertil Dev; 2011; 23(7):876-88. PubMed ID: 21871207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling.
    Cowart LA; Okamoto Y; Pinto FR; Gandy JL; Almeida JS; Hannun YA
    J Biol Chem; 2003 Aug; 278(32):30328-38. PubMed ID: 12740364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sphingolipid salvage pathway in ceramide metabolism and signaling.
    Kitatani K; Idkowiak-Baldys J; Hannun YA
    Cell Signal; 2008 Jun; 20(6):1010-8. PubMed ID: 18191382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability.
    Montefusco DJ; Newcomb B; Gandy JL; Brice SE; Matmati N; Cowart LA; Hannun YA
    J Biol Chem; 2012 Mar; 287(12):9280-9. PubMed ID: 22277656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipids are potential heat stress signals in Saccharomyces.
    Dickson RC; Nagiec EE; Skrzypek M; Tillman P; Wells GB; Lester RL
    J Biol Chem; 1997 Nov; 272(48):30196-200. PubMed ID: 9374502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipid signaling in yeast: potential implications for understanding disease.
    Epstein S; Riezman H
    Front Biosci (Elite Ed); 2013 Jan; 5(1):97-108. PubMed ID: 23276973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae.
    Cowart LA; Okamoto Y; Lu X; Hannun YA
    Biochem J; 2006 Feb; 393(Pt 3):733-40. PubMed ID: 16201964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption.
    Linn SC; Kim HS; Keane EM; Andras LM; Wang E; Merrill AH
    Biochem Soc Trans; 2001 Nov; 29(Pt 6):831-5. PubMed ID: 11709083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae.
    Cowart LA; Gandy JL; Tholanikunnel B; Hannun YA
    Biochem J; 2010 Oct; 431(1):31-8. PubMed ID: 20629639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo ceramide accumulation due to inhibition of its conversion to complex sphingolipids in apoptotic photosensitized cells.
    Dolgachev V; Farooqui MS; Kulaeva OI; Tainsky MA; Nagy B; Hanada K; Separovic D
    J Biol Chem; 2004 May; 279(22):23238-49. PubMed ID: 15020599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.