These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 12785842)
1. Synthesis and characterization of model compounds of the lysine tyrosyl quinone cofactor of lysyl oxidase. Mure M; Wang SX; Klinman JP J Am Chem Soc; 2003 May; 125(20):6113-25. PubMed ID: 12785842 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a model compound for the lysine tyrosylquinone cofactor of lysyl oxidase. Akagawa M; Suyama K Biochem Biophys Res Commun; 2001 Feb; 281(1):193-9. PubMed ID: 11178979 [TBL] [Abstract][Full Text] [Related]
4. The Formation of lysine tyrosylquinone (LTQ) is a self-processing reaction. Expression and characterization of a Drosophila lysyl oxidase. Bollinger JA; Brown DE; Dooley DM Biochemistry; 2005 Sep; 44(35):11708-14. PubMed ID: 16128571 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the native lysine tyrosylquinone cofactor in lysyl oxidase by Raman spectroscopy. Wang SX; Nakamura N; Mure M; Klinman JP; Sanders-Loehr J J Biol Chem; 1997 Nov; 272(46):28841-4. PubMed ID: 9360949 [TBL] [Abstract][Full Text] [Related]
6. Trapping of a dopaquinone intermediate in the TPQ cofactor biogenesis in a copper-containing amine oxidase from Arthrobacter globiformis. Moore RH; Spies MA; Culpepper MB; Murakawa T; Hirota S; Okajima T; Tanizawa K; Mure M J Am Chem Soc; 2007 Sep; 129(37):11524-34. PubMed ID: 17715921 [TBL] [Abstract][Full Text] [Related]
7. A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Wang SX; Mure M; Medzihradszky KF; Burlingame AL; Brown DE; Dooley DM; Smith AJ; Kagan HM; Klinman JP Science; 1996 Aug; 273(5278):1078-84. PubMed ID: 8688089 [TBL] [Abstract][Full Text] [Related]
8. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases. Ling KQ; Sayre LM J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543 [TBL] [Abstract][Full Text] [Related]
9. Characterization of products from the reactions of N-acetyldopamine quinone with N-acetylhistidine. Xu R; Huang X; Morgan TD; Prakash O; Kramer KJ; Hawley MD Arch Biochem Biophys; 1996 May; 329(1):56-64. PubMed ID: 8619635 [TBL] [Abstract][Full Text] [Related]
10. Catalytic turnover of benzylamine by a model for the lysine tyrosylquinone (LTQ) cofactor of lysyl oxidase. Ling KQ; Kim J; Sayre LM J Am Chem Soc; 2001 Oct; 123(39):9606-11. PubMed ID: 11572681 [TBL] [Abstract][Full Text] [Related]
11. Trihydroxyphenylalanine quinone (TPQ) from copper amine oxidases and lysyl tyrosylquinone (LTQ) from lysyl oxidase. Dove JE; Klinman JP Adv Protein Chem; 2001; 58():141-74. PubMed ID: 11665487 [No Abstract] [Full Text] [Related]
12. Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Amaro AR; Oakley GG; Bauer U; Spielmann HP; Robertson LW Chem Res Toxicol; 1996; 9(3):623-9. PubMed ID: 8728508 [TBL] [Abstract][Full Text] [Related]
13. Purification of high yields of catalytically active lysyl oxidase directly from Escherichia coli cell culture. Herwald SE; Greenaway FT; Lopez KM Protein Expr Purif; 2010 Nov; 74(1):116-21. PubMed ID: 20600936 [TBL] [Abstract][Full Text] [Related]
14. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
15. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. Li WW; Heinze J; Haehnel W J Am Chem Soc; 2005 May; 127(17):6140-1. PubMed ID: 15853297 [TBL] [Abstract][Full Text] [Related]
16. An unexpected formation of the spectroscopic Cu(I)-semiquinone radical by xenon-induced self-catalysis of a copper quinoprotein. Medda R; Mura A; Longu S; Anedda R; Padiglia A; Casu M; Floris G Biochimie; 2006 Jul; 88(7):827-35. PubMed ID: 16519984 [TBL] [Abstract][Full Text] [Related]
17. The 1.23 Angstrom structure of Pichia pastoris lysyl oxidase reveals a lysine-lysine cross-link. Duff AP; Cohen AE; Ellis PJ; Hilmer K; Langley DB; Dooley DM; Freeman HC; Guss JM Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1073-84. PubMed ID: 16929109 [TBL] [Abstract][Full Text] [Related]
18. Physiological importance of quinoenzymes and the O-quinone family of cofactors. Stites TE; Mitchell AE; Rucker RB J Nutr; 2000 Apr; 130(4):719-27. PubMed ID: 10736320 [TBL] [Abstract][Full Text] [Related]
19. Identification of adducts between an odoriferous volatile thiol and oxidized grape phenolic compounds: kinetic study of adduct formation under chemical and enzymatic oxidation conditions. Nikolantonaki M; Jourdes M; Shinoda K; Teissedre PL; Quideau S; Darriet P J Agric Food Chem; 2012 Mar; 60(10):2647-56. PubMed ID: 22324817 [TBL] [Abstract][Full Text] [Related]
20. Role of the interactions between the active site base and the substrate Schiff base in amine oxidase catalysis. Evidence from structural and spectroscopic studies of the 2-hydrazinopyridine adduct of Escherichia coli amine oxidase. Mure M; Brown DE; Saysell C; Rogers MS; Wilmot CM; Kurtis CR; McPherson MJ; Phillips SE; Knowles PF; Dooley DM Biochemistry; 2005 Feb; 44(5):1568-82. PubMed ID: 15683241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]