These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 12786089)
1. Quantum-dot ground-state energies and spin polarizations: soft versus hard chaos. Ullmo D; Nagano T; Tomsovic S Phys Rev Lett; 2003 May; 90(17):176801. PubMed ID: 12786089 [TBL] [Abstract][Full Text] [Related]
2. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
3. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
4. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study. Rotter S; Türeci HE; Alhassid Y; Stone AD Phys Rev Lett; 2008 Apr; 100(16):166601. PubMed ID: 18518229 [TBL] [Abstract][Full Text] [Related]
5. Atomic motion in magneto-optical double-well potentials: a testing ground for quantum chaos. Ghose S; Alsing PM; Deutsch IH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056119. PubMed ID: 11736026 [TBL] [Abstract][Full Text] [Related]
6. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
7. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction. Sharafutdinov AU; Burmistrov IS J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594 [TBL] [Abstract][Full Text] [Related]
8. Theory of chaos regularization of tunneling in chaotic quantum dots. Lee MJ; Antonsen TM; Ott E; Pecora LM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056212. PubMed ID: 23214862 [TBL] [Abstract][Full Text] [Related]
9. Spin states in graphene quantum dots. Güttinger J; Frey T; Stampfer C; Ihn T; Ensslin K Phys Rev Lett; 2010 Sep; 105(11):116801. PubMed ID: 20867593 [TBL] [Abstract][Full Text] [Related]
10. Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Santos LF; Rigol M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031130. PubMed ID: 21230048 [TBL] [Abstract][Full Text] [Related]
12. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction. Vahedi J; Ashouri A; Mahdavifar S Chaos; 2016 Oct; 26(10):103106. PubMed ID: 27802669 [TBL] [Abstract][Full Text] [Related]
13. Detection of single spin decoherence in a quantum dot via charge currents. Engel HA; Loss D Phys Rev Lett; 2001 May; 86(20):4648-51. PubMed ID: 11384305 [TBL] [Abstract][Full Text] [Related]
14. Ground state of the parallel double quantum dot system. Zitko R; Mravlje J; Haule K Phys Rev Lett; 2012 Feb; 108(6):066602. PubMed ID: 22401099 [TBL] [Abstract][Full Text] [Related]
15. Fidelity and quantum chaos in the mesoscopic device for the josephson flux qubit. Pozzo EN; Domínguez D Phys Rev Lett; 2007 Feb; 98(5):057006. PubMed ID: 17358889 [TBL] [Abstract][Full Text] [Related]
16. Magnetic vortex state stability, reversal and dynamics in restricted geometries. Guslienko KY J Nanosci Nanotechnol; 2008 Jun; 8(6):2745-60. PubMed ID: 18681013 [TBL] [Abstract][Full Text] [Related]
17. Exploring chaos in the Dicke model using ground-state fidelity and Loschmidt echo. Bhattacharya U; Dasgupta S; Dutta A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022920. PubMed ID: 25215812 [TBL] [Abstract][Full Text] [Related]
18. Interplay between the mesoscopic Stoner and Kondo effects in quantum dots. Murthy G Phys Rev Lett; 2005 Apr; 94(12):126803. PubMed ID: 15903947 [TBL] [Abstract][Full Text] [Related]