These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12786134)

  • 1. Molecular dynamics simulation of compression-induced solid-to-solid phase transitions in colloidal monolayers.
    Sun J; Stirner T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051107. PubMed ID: 12786134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the structural configuration of binary colloidal monolayers.
    Stirner T; Sun J
    Langmuir; 2005 Jul; 21(14):6636-41. PubMed ID: 15982077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of optically trapped colloidal particles at an oil-water interface.
    Sun J; Stirner T
    J Chem Phys; 2004 Sep; 121(9):4292-6. PubMed ID: 15332977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing transition and interaction potential in monolayers of microparticles at fluid interfaces.
    Bonales LJ; Rubio JE; Ritacco H; Vega C; Rubio RG; Ortega F
    Langmuir; 2011 Apr; 27(7):3391-400. PubMed ID: 21361305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.
    Lin W; Clark AJ; Paesani F
    Langmuir; 2015 Feb; 31(7):2147-56. PubMed ID: 25642579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization of bidisperse repulsive colloids in two-dimensional space: a study of model systems constructed at the air-water interface.
    Hur J; Mahynski NA; Won YY
    Langmuir; 2010 Jul; 26(14):11737-49. PubMed ID: 20527939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collapse-induced phase transitions in binary interfacial microgel monolayers.
    Harrer J; Ciarella S; Rey M; Löwen H; Janssen LMC; Vogel N
    Soft Matter; 2021 May; 17(17):4504-4516. PubMed ID: 33949612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography.
    Scheidegger L; Fernández-Rodríguez MÁ; Geisel K; Zanini M; Elnathan R; Richtering W; Isa L
    Phys Chem Chem Phys; 2017 Mar; 19(13):8671-8680. PubMed ID: 28128829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic dynamics of nanoparticle monolayers at air-water interface.
    Bhattacharya R; Basu JK
    J Colloid Interface Sci; 2013 Apr; 396():69-74. PubMed ID: 23411354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of long-range orientational order in monolayers of polydisperse colloids.
    Rabideau BD; Pell LE; Bonnecaze RT; Korgel BA
    Langmuir; 2007 Jan; 23(3):1270-4. PubMed ID: 17241044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous formation of mesostructures in colloidal monolayers trapped at the air-water interface: a simple explanation.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; Hidalgo-Alvarez R
    Langmuir; 2004 Aug; 20(17):6977-80. PubMed ID: 15301474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions in two-dimensional colloidal particles at oil/water interfaces.
    Lin BJ; Chen LJ
    J Chem Phys; 2007 Jan; 126(3):034706. PubMed ID: 17249895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-Field-Induced Reversible Phase Transitions in Two-Dimensional Colloidal Crystals.
    Collins KA; Zhong X; Song P; Little NR; Ward MD; Lee SS
    Langmuir; 2015 Sep; 31(38):10411-7. PubMed ID: 26343786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obtaining effective pair potentials in colloidal monolayers using a thermodynamically consistent inversion scheme.
    Law AD; Buzza DM
    Langmuir; 2010 May; 26(10):7107-16. PubMed ID: 20405861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transitions of colloidal monolayers in periodic pinning arrays.
    Mangold K; Leiderer P; Bechinger C
    Phys Rev Lett; 2003 Apr; 90(15):158302. PubMed ID: 12732078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting of a confined monolayer of magnetized beads.
    Schockmel J; Mersch E; Vandewalle N; Lumay G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062201. PubMed ID: 23848665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demixing and orientational ordering in mixtures of rectangular particles.
    de las Heras D; Martínez-Ratón Y; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031704. PubMed ID: 17930260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commensurate solid-solid phase transitions in self-assembled monolayers of alkylthiolates lying on metal surfaces.
    Wang Y; Solano-Canchaya JG; Alcamí M; Busnengo HF; Martín F
    J Am Chem Soc; 2012 Aug; 134(32):13224-7. PubMed ID: 22827341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.