These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12786205)

  • 1. Simple model of the aging effect in heart interbeat time series.
    Guzmán-Vargas L; Angulo-Brown F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):052901. PubMed ID: 12786205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics.
    Iyengar N; Peng CK; Morin R; Goldberger AL; Lipsitz LA
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1078-84. PubMed ID: 8898003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory.
    Pikkujämsä SM; Mäkikallio TH; Sourander LB; Räihä IJ; Puukka P; Skyttä J; Peng CK; Goldberger AL; Huikuri HV
    Circulation; 1999 Jul; 100(4):393-9. PubMed ID: 10421600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifractality and scale invariance in human heartbeat dynamics.
    Ching ES; Tsang YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041910. PubMed ID: 17995029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly.
    Schmitt DT; Ivanov PCh
    Am J Physiol Regul Integr Comp Physiol; 2007 Nov; 293(5):R1923-37. PubMed ID: 17670859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging in autonomic control by multifractal studies of cardiac interbeat intervals in the VLF band.
    Makowiec D; Rynkiewicz A; Wdowczyk-Szulc J; Zarczyńska-Buchowiecka M; Gałaska R; Kryszewski S
    Physiol Meas; 2011 Oct; 32(10):1681-99. PubMed ID: 21926460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical physics and physiology: monofractal and multifractal approaches.
    Stanley HE; Amaral LA; Goldberger AL; Havlin S; Ivanov PCh ; Peng CK
    Physica A; 1999 Aug; 270(1-2):309-24. PubMed ID: 11543220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical structure in healthy and diseased human heart rate variability.
    Ching ES; Lin DC; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051919. PubMed ID: 15244859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatility of linear and nonlinear time series.
    Kalisky T; Ashkenazy Y; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011913. PubMed ID: 16090007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.
    Peng CK; Havlin S; Stanley HE; Goldberger AL
    Chaos; 1995; 5(1):82-7. PubMed ID: 11538314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic model for heart-rate fluctuations.
    Kuusela T; Shepherd T; Hietarinta J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061904. PubMed ID: 16241258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifractal analysis of DNA walks and trails.
    Rosas A; Nogueira E; Fontanari JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061906. PubMed ID: 12513317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detrended fluctuation analysis of short-term heart rate variability in late pregnant women.
    Yeh RG; Shieh JS; Chen GY; Kuo CD
    Auton Neurosci; 2009 Oct; 150(1-2):122-6. PubMed ID: 19464962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deviations from uniform power law scaling in nonstationary time series.
    Viswanathan GM; Peng CK; Stanley HE; Goldberger AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1997 Jan; 55(1):845-9. PubMed ID: 11541831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing heart rate variability by scale-dependent Lyapunov exponent.
    Hu J; Gao J; Tung WW
    Chaos; 2009 Jun; 19(2):028506. PubMed ID: 19566281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new criterion to distinguish stochastic and deterministic time series with the Poincaré section and fractal dimension.
    Golestani A; Jahed Motlagh MR; Ahmadian K; Omidvarnia AH; Mozayani N
    Chaos; 2009 Mar; 19(1):013137. PubMed ID: 19335001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal behaviour of heart rate variability reflects severity in stroke patients.
    D'Addio G; Corbi G; Accardo A; Russo G; Ferrara N; Mazzoleni MC; Princi T
    Stud Health Technol Inform; 2009; 150():794-8. PubMed ID: 19745422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal scaling properties of heart rate dynamics in persons with Down syndrome.
    Mendonca GV; Pereira FD; Fernhall B
    Auton Neurosci; 2011 Apr; 161(1-2):110-5. PubMed ID: 21333612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying fractal dynamics of human respiration: age and gender effects.
    Peng CK; Mietus JE; Liu Y; Lee C; Hausdorff JM; Stanley HE; Goldberger AL; Lipsitz LA
    Ann Biomed Eng; 2002 May; 30(5):683-92. PubMed ID: 12108842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear and chaos characteristics of heart period time series: healthy aging and postural change.
    Vuksanović V; Gal V
    Auton Neurosci; 2005 Aug; 121(1-2):94-100. PubMed ID: 16055389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.