These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12786211)

  • 1. Direction of coupling from phases of interacting oscillators: an information-theoretic approach.
    Palus M; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):055201. PubMed ID: 12786211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direction of coupling from phases of interacting oscillators: a permutation information approach.
    Bahraminasab A; Ghasemi F; Stefanovska A; McClintock PV; Kantz H
    Phys Rev Lett; 2008 Feb; 100(8):084101. PubMed ID: 18352623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of coupling direction: application to cardiorespiratory interaction.
    Rosenblum MG; Cimponeriu L; Bezerianos A; Patzak A; Mrowka R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041909. PubMed ID: 12005875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the directionality of coupling with conditional mutual information.
    Vejmelka M; Palus M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026214. PubMed ID: 18352110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting direction of coupling in interacting oscillators.
    Rosenblum MG; Pikovsky AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):045202. PubMed ID: 11690077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering synchronization of chaotic oscillators using controller based coupling design.
    Padmanaban E; Hens C; Dana SK
    Chaos; 2011 Mar; 21(1):013110. PubMed ID: 21456824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying interactions between real oscillators with information theory and phase models: application to cardiorespiratory coupling.
    Zhu Y; Hsieh YH; Dhingra RR; Dick TE; Jacono FJ; Galán RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022709. PubMed ID: 23496550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach.
    Jamsek J; Palus M; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036207. PubMed ID: 20365832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase dynamics of coupled oscillators reconstructed from data.
    Kralemann B; Cimponeriu L; Rosenblum M; Pikovsky A; Mrowka R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066205. PubMed ID: 18643348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing direction of coupling from experimental observations.
    Bezruchko B; Ponomarenko V; Rosenblum MG; Pikovsky AS
    Chaos; 2003 Mar; 13(1):179-84. PubMed ID: 12675424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating coupling direction between neuronal populations with permutation conditional mutual information.
    Li X; Ouyang G
    Neuroimage; 2010 Aug; 52(2):497-507. PubMed ID: 20452438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators.
    Zhou BB; Roy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026205. PubMed ID: 17358403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric Bonhoeffer-van der Pol oscillators near a codimension-two bifurcation point.
    Horikawa Y; Kitajima H
    Chaos; 2012 Sep; 22(3):033115. PubMed ID: 23020454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated quantification of the synchrogram by recurrence plot analysis.
    Nguyen CD; Wilson SJ; Crozier S
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):946-55. PubMed ID: 22186929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic synchronization under unidirectional coupling: numerics and experiments.
    Cruz JM; Rivera M; Parmananda P
    J Phys Chem A; 2009 Aug; 113(32):9051-6. PubMed ID: 19610633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the direction of the coupling by conditional probabilities of recurrence.
    Romano MC; Thiel M; Kurths J; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036211. PubMed ID: 17930327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring coupling asymmetry and time delays in neural oscillators.
    Cimponeriu L; Rosenblum M; Bezerianos A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2033-6. PubMed ID: 17282625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocal wave scattering on nonlinear string-coupled oscillators.
    Lepri S; Pikovsky A
    Chaos; 2014 Dec; 24(4):043119. PubMed ID: 25554039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of coupled Boolean phase oscillators.
    Rosin DP; Rontani D; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042907. PubMed ID: 24827313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of coupling for synchronization of chaotic oscillators.
    Grosu I; Banerjee R; Roy PK; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016212. PubMed ID: 19658797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.