These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 12786245)
1. Disclinations in square and hexagonal patterns. Golovin AA; Nepomnyashchy AA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056202. PubMed ID: 12786245 [TBL] [Abstract][Full Text] [Related]
2. Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. Hutt A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026214. PubMed ID: 17358412 [TBL] [Abstract][Full Text] [Related]
3. The phase structure of grain boundaries. Ercolani NM; Kamburov N; Lega J Philos Trans A Math Phys Eng Sci; 2018 Apr; 376(2117):. PubMed ID: 29507177 [TBL] [Abstract][Full Text] [Related]
4. Stability of hexagonal patterns in Bénard-Marangoni convection. Echebarria B; Pérez-García C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066307. PubMed ID: 11415227 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation. Gomez H; París J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046702. PubMed ID: 21599329 [TBL] [Abstract][Full Text] [Related]
6. Evolution of hexagonal patterns from controlled initial conditions in a Bénard-Marangoni convection experiment. Semwogerere D; Schatz MF Phys Rev Lett; 2002 Feb; 88(5):054501. PubMed ID: 11863731 [TBL] [Abstract][Full Text] [Related]
7. Spiral-defect chaos: Swift-Hohenberg model versus Boussinesq equations. Schmitz R; Pesch W; Zimmermann W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):037302. PubMed ID: 11909322 [TBL] [Abstract][Full Text] [Related]
8. Large-Scale Pattern Formation in the Presence of Small-Scale Random Advection. Ibbeken G; Green G; Wilczek M Phys Rev Lett; 2019 Sep; 123(11):114501. PubMed ID: 31573241 [TBL] [Abstract][Full Text] [Related]
9. Description of mesoscale pattern formation in shallow convective cloud fields by using time-dependent Ginzburg-Landau and Swift-Hohenberg stochastic equations. Monroy DL; Naumis GG Phys Rev E; 2021 Mar; 103(3-1):032312. PubMed ID: 33862782 [TBL] [Abstract][Full Text] [Related]
10. Grain-boundary motion in layered phases. Boyer D; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061704. PubMed ID: 11415120 [TBL] [Abstract][Full Text] [Related]
11. Analytical results for front pinning between an hexagonal pattern and a uniform state in pattern-formation systems. Kozyreff G; Chapman SJ Phys Rev Lett; 2013 Aug; 111(5):054501. PubMed ID: 23952408 [TBL] [Abstract][Full Text] [Related]
12. Efficient algorithm on a nonstaggered mesh for simulating Rayleigh-Bénard convection in a box. Chiam KH; Lai MC; Greenside HS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026705. PubMed ID: 14525146 [TBL] [Abstract][Full Text] [Related]
13. Spatially extended dislocations produced by the dispersive Swift-Hohenberg equation. Balch B; Shipman PD; Bradley RM Phys Rev E; 2023 Apr; 107(4-1):044214. PubMed ID: 37198825 [TBL] [Abstract][Full Text] [Related]
14. Dislocation dynamics in Rayleigh-Bénard convection. Walter T; Pesch W; Bodenschatz E Chaos; 2004 Sep; 14(3):933-9. PubMed ID: 15447003 [TBL] [Abstract][Full Text] [Related]
15. Pattern formation near onset of a convecting fluid in an annulus. Sensoy B; Greenside H Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046204. PubMed ID: 11690122 [TBL] [Abstract][Full Text] [Related]
16. Exploring spiral defect chaos in generalized Swift-Hohenberg models with mean flow. Karimi A; Huang ZF; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046215. PubMed ID: 22181253 [TBL] [Abstract][Full Text] [Related]
17. Defect formation in the Swift-Hohenberg equation. Galla T; Moro E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035101. PubMed ID: 12689119 [TBL] [Abstract][Full Text] [Related]