These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
631 related articles for article (PubMed ID: 12786270)
1. Onset of turbulence in accelerated high-Reynolds-number flow. Zhou Y; Robey HF; Buckingham AC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270 [TBL] [Abstract][Full Text] [Related]
2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a turbulent-mix model for variable-density and compressible flows. Banerjee A; Gore RA; Andrews MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392 [TBL] [Abstract][Full Text] [Related]
4. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Tritschler VK; Zubel M; Hickel S; Adams NA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181 [TBL] [Abstract][Full Text] [Related]
5. Experiments of the Richtmyer-Meshkov instability. Prestridge K; Orlicz G; Balasubramanian S; Balakumar BJ Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120165. PubMed ID: 24146004 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related]
7. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
8. Some peculiar features of hydrodynamic instability development. Meshkov E Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012 [TBL] [Abstract][Full Text] [Related]
9. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
10. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Schilling O; Latini M; Don WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154 [TBL] [Abstract][Full Text] [Related]
11. An experimental study of the Richtmyer-Meshkov instability in microgravity. Niederhaus CE; Jacobs JW Ann N Y Acad Sci; 2004 Nov; 1027():403-13. PubMed ID: 15644371 [TBL] [Abstract][Full Text] [Related]
12. Effects of initial condition spectral content on shock-driven turbulent mixing. Nelson NJ; Grinstein FF Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013014. PubMed ID: 26274276 [TBL] [Abstract][Full Text] [Related]
13. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Zhou Y; Zimmerman GB; Burke EW Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699 [TBL] [Abstract][Full Text] [Related]
14. Acceleration and turbulence in Rayleigh-Taylor mixing. Sreenivasan KR; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015 [TBL] [Abstract][Full Text] [Related]
15. Pseudocompressible approximation and statistical turbulence modeling: application to shock tube flows. Soulard O; Griffond J; Souffland D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026307. PubMed ID: 22463317 [TBL] [Abstract][Full Text] [Related]
16. The density ratio dependence of self-similar Rayleigh-Taylor mixing. Youngs DL Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005 [TBL] [Abstract][Full Text] [Related]
17. The onset of turbulence in pipe flow. Avila K; Moxey D; de Lozar A; Avila M; Barkley D; Hof B Science; 2011 Jul; 333(6039):192-6. PubMed ID: 21737736 [TBL] [Abstract][Full Text] [Related]