These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 12786387)
1. Nematic-liquid-crystal-air interface in a radial Hele-Shaw cell: electric field effects. Tóth-Katona T; Buka A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041717. PubMed ID: 12786387 [TBL] [Abstract][Full Text] [Related]
2. Periodic forcing in viscous fingering of a nematic liquid crystal. Folch R; Tóth-Katona T; Buka A; Casademunt J; Hernández-Machado A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056225. PubMed ID: 11736072 [TBL] [Abstract][Full Text] [Related]
3. Hele-Shaw flow of a nematic liquid crystal. Cousins JRL; Mottram NJ; Wilson SK Phys Rev E; 2024 Sep; 110(3-1):034702. PubMed ID: 39425443 [TBL] [Abstract][Full Text] [Related]
4. Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. Dierking I; Marshall O; Wright J; Bulleid N Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061709. PubMed ID: 16089754 [TBL] [Abstract][Full Text] [Related]
5. Kinetic undercooling in Hele-Shaw flows. Anjos PH; Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043019. PubMed ID: 26565344 [TBL] [Abstract][Full Text] [Related]
6. Using the dynamic, expanding liquid-liquid interface in a Hele-Shaw cell in crystal growth and nanoparticle assembly. Rautaray D; Kavathekar R; Sastry M Faraday Discuss; 2005; 129():205-17; discussion 275-89. PubMed ID: 15715308 [TBL] [Abstract][Full Text] [Related]
7. Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Dierking I; Ravnik M; Lark E; Healey J; Alexander GP; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021703. PubMed ID: 22463227 [TBL] [Abstract][Full Text] [Related]
8. Growth dynamics of a liquid crystal at the three- to two-dimensional crossover in a hele-shaw cell. Chan HK; Dierking I J Phys Chem B; 2007 Nov; 111(47):13383-5. PubMed ID: 17979268 [TBL] [Abstract][Full Text] [Related]
9. Electrorheological effect and directional non-Newtonian behavior in a nematic capillary subjected to a pressure gradient. Mendoza CI; Corella-Madueño A; Reyes JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011706. PubMed ID: 18351865 [TBL] [Abstract][Full Text] [Related]
10. Electroconvection in nematic liquid crystals in Hele-Shaw cells. Huh JH; Kai S Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):042702. PubMed ID: 14682986 [TBL] [Abstract][Full Text] [Related]
11. Theoretical predictions of disclination loop growth for nematic liquid crystals under capillary confinement. Shams A; Yao X; Park JO; Srinivasarao M; Rey AD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042501. PubMed ID: 25375509 [TBL] [Abstract][Full Text] [Related]
12. Transverse surface-induced polarization at the interface between a chiral nematic liquid crystal and a substrate. Syed IM; Rosenblatt C Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041707. PubMed ID: 12786377 [TBL] [Abstract][Full Text] [Related]
13. Interfacial forces and Marangoni flow on a nematic drop retracting in an isotropic fluid. Yue P; Feng JJ; Liu C; Shen J J Colloid Interface Sci; 2005 Oct; 290(1):281-8. PubMed ID: 16122548 [TBL] [Abstract][Full Text] [Related]
14. Droplet relaxation in Hele-Shaw geometry: Application to the measurement of the nematic-isotropic surface tension. Oswald P; Poy G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062512. PubMed ID: 26764716 [TBL] [Abstract][Full Text] [Related]
15. Control of the nematic-isotropic phase transition by an electric field. Mottram NJ; Care CM; Cleaver DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041703. PubMed ID: 17155074 [TBL] [Abstract][Full Text] [Related]
16. Threshold field for a nematic liquid crystal confined between two coaxial cylinders. Corella-Madueño A; Castellanos-Moreno A; Gutiérrez-López S; Rosas RA; Reyes JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):022701. PubMed ID: 18850875 [TBL] [Abstract][Full Text] [Related]
17. Influence of an electric field on the non-Newtonian response of a hybrid-aligned nematic cell under shear flow. Guillén AD; Mendoza CI J Chem Phys; 2007 May; 126(20):204905. PubMed ID: 17552798 [TBL] [Abstract][Full Text] [Related]
18. Gas-driven displacement of a liquid in a partially filled radial Hele-Shaw cell. Ward T; White AR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046316. PubMed ID: 21599304 [TBL] [Abstract][Full Text] [Related]
19. Electrorheological response and orientational bistability of a homogeneously aligned nematic capillary. Reyes JA; Corella-Madueño A; Mendoza CI J Chem Phys; 2008 Aug; 129(8):084710. PubMed ID: 19044844 [TBL] [Abstract][Full Text] [Related]
20. Structural and dynamical characterization of Hele-Shaw viscous fingering. Grosfils P; Boon JP; Chin J; Boek ES Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1723-34. PubMed ID: 15306442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]