These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12786419)
1. Exact scaling properties of a hierarchical network model. Noh JD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045103. PubMed ID: 12786419 [TBL] [Abstract][Full Text] [Related]
2. Flexible construction of hierarchical scale-free networks with general exponent. Nacher JC; Ueda N; Kanehisa M; Akutsu T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036132. PubMed ID: 15903518 [TBL] [Abstract][Full Text] [Related]
3. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141 [TBL] [Abstract][Full Text] [Related]
4. Exactly solvable scale-free network model. Iguchi K; Yamada H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036144. PubMed ID: 15903530 [TBL] [Abstract][Full Text] [Related]
5. Maximal planar networks with large clustering coefficient and power-law degree distribution. Zhou T; Yan G; Wang BH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046141. PubMed ID: 15903760 [TBL] [Abstract][Full Text] [Related]
6. Approaching the thermodynamic limit in equilibrated scale-free networks. Waclaw B; Bogacz L; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061125. PubMed ID: 19256820 [TBL] [Abstract][Full Text] [Related]
7. Fractality in complex networks: critical and supercritical skeletons. Kim JS; Goh KI; Salvi G; Oh E; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016110. PubMed ID: 17358227 [TBL] [Abstract][Full Text] [Related]
8. Scale-free networks with tunable degree-distribution exponents. Lee HY; Chan HY; Hui PM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):067102. PubMed ID: 15244781 [TBL] [Abstract][Full Text] [Related]
9. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture. Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046107. PubMed ID: 15169069 [TBL] [Abstract][Full Text] [Related]
10. Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network. Hinczewski M; Nihat Berker A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066126. PubMed ID: 16906933 [TBL] [Abstract][Full Text] [Related]
11. Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability. Dadashi M; Barjasteh I; Jalili M Chaos; 2010 Dec; 20(4):043119. PubMed ID: 21198089 [TBL] [Abstract][Full Text] [Related]
12. Clustering properties of a generalized critical Euclidean network. Sen P; Manna SS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026104. PubMed ID: 14525046 [TBL] [Abstract][Full Text] [Related]
14. Geometric fractal growth model for scale-free networks. Jung S; Kim S; Kahng B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056101. PubMed ID: 12059641 [TBL] [Abstract][Full Text] [Related]
15. Where to look for power Laws in urban road networks? Akbarzadeh M; Memarmontazerin S; Soleimani S Appl Netw Sci; 2018; 3(1):4. PubMed ID: 30839786 [TBL] [Abstract][Full Text] [Related]
16. Clustering under the line graph transformation: application to reaction network. Nacher JC; Ueda N; Yamada T; Kanehisa M; Akutsu T BMC Bioinformatics; 2004 Dec; 5():207. PubMed ID: 15617578 [TBL] [Abstract][Full Text] [Related]