These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 12786428)
1. Three-dimensional local density of states in a finite two-dimensional photonic crystal composed of cylinders. Fussell DP; McPhedran RC; Sterke CM; Asatryan AA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045601. PubMed ID: 12786428 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional Green's tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders. Fussell DP; McPhedran RC; Martijn de Sterke C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066608. PubMed ID: 15697527 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional Green's function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length. Asatryan AA; Busch K; McPhedran RC; Botten LC; de Sterke CM; Nicorovici NA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046612. PubMed ID: 11308973 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional local density of states in two-dimensional photonic crystals. Asatryan A; Fabre S; Busch K; McPhedran R; Botten L; de Sterke M; Nicorovici NA Opt Express; 2001 Jan; 8(3):191-6. PubMed ID: 19417803 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional treatment of the level shift and decay rate in photonic crystals. Fussell DP; McPhedran RC; Martijn de Sterke C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046605. PubMed ID: 16383552 [TBL] [Abstract][Full Text] [Related]
6. Density of states functions for photonic crystals. McPhedran RC; Botten LC; McOrist J; Asatryan AA; De Sterke CM; Nicorovici NA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016609. PubMed ID: 14995738 [TBL] [Abstract][Full Text] [Related]
7. Two-dimensional Green's tensor for gyrotropic clusters composed of circular cylinders. Asatryan AA; Botten LC; Fang K; Fan S; McPhedran RC J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2294-303. PubMed ID: 25401258 [TBL] [Abstract][Full Text] [Related]
8. Numerical computation of the Green's function for two-dimensional finite-size photonic crystals of infinite length. Seydou F; Ramahi OM; Duraiswami R; Seppänen T Opt Express; 2006 Nov; 14(23):11362-71. PubMed ID: 19529554 [TBL] [Abstract][Full Text] [Related]
9. Semianalytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures. de Lasson JR; Kristensen PT; Mørk J; Gregersen N Opt Lett; 2015 Dec; 40(24):5790-3. PubMed ID: 26670513 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous emission from photonic crystals: full vectorial calculations. Li ZY; Lin LL; Zhang ZQ Phys Rev Lett; 2000 May; 84(19):4341-4. PubMed ID: 10990681 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance. Mavrogordatos TK; Morris SM; Wood SM; Coles HJ; Wilkinson TD Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062504. PubMed ID: 23848702 [TBL] [Abstract][Full Text] [Related]
12. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities. Thijssen AC; Cryan MJ; Rarity JG; Oulton R Opt Express; 2012 Sep; 20(20):22412-28. PubMed ID: 23037390 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Mohammadi S; Eftekhar AA; Khelif A; Adibi A Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763 [TBL] [Abstract][Full Text] [Related]
14. A birefringent reflector from a 1D anisotropic photonic crystal. Ouchani N; Bria D; Djafari Rouhani B; Nougaoui A J Phys Condens Matter; 2009 Dec; 21(48):485401. PubMed ID: 21832515 [TBL] [Abstract][Full Text] [Related]
15. Slanted-pore photonic band-gap materials. Toader O; John S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036605. PubMed ID: 15903603 [TBL] [Abstract][Full Text] [Related]
16. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Degirmenci E; Landais P Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592 [TBL] [Abstract][Full Text] [Related]
17. Finite-difference calculation of the Green's function of a one-dimensional crystal: application to the Krönig-Penney potential. Mayer A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046708. PubMed ID: 17155213 [TBL] [Abstract][Full Text] [Related]
18. THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands. Kitagawa J; Kodama M; Koya S; Nishifuji Y; Armand D; Kadoya Y Opt Express; 2012 Jul; 20(16):17271-80. PubMed ID: 23038281 [TBL] [Abstract][Full Text] [Related]
19. Photonic band gaps based on tetragonal lattices of slanted pores. Toader O; Berciu M; John S Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259 [TBL] [Abstract][Full Text] [Related]
20. Effects induced by Mie resonance in two-dimensional photonic crystals. Shi L; Jiang X; Li C J Phys Condens Matter; 2007 Apr; 19(17):176214. PubMed ID: 21690959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]