These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12786515)

  • 1. Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions.
    Skorobogatiy M; Johnson SG; Jacobs SA; Fink Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046613. PubMed ID: 12786515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.
    Skorobogatiy M; Jacobs S; Johnson S; Fink Y
    Opt Express; 2002 Oct; 10(21):1227-43. PubMed ID: 19451984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the impact of imperfections in high-index-contrast photonic waveguides.
    Skorobogatiy M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046609. PubMed ID: 15600549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation theory for Maxwell's equations with shifting material boundaries.
    Johnson SG; Ibanescu M; Skorobogatiy MA; Weisberg O; Joannopoulos JD; Fink Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066611. PubMed ID: 12188855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled-mode formulation of two-parallel photonic-crystal waveguides.
    Yasumoto K; Jandieri V; Liu Y
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):96-101. PubMed ID: 23456005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods.
    Kottke C; Farjadpour A; Johnson SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036611. PubMed ID: 18517547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex coupled-mode theory for optical waveguides.
    Huang WP; Mu J
    Opt Express; 2009 Oct; 17(21):19134-52. PubMed ID: 20372650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method.
    Afifi S; Dusséaux R
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1171-84. PubMed ID: 20448785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective field theory for the nonlinear optical properties of photonic crystals.
    Sipe JE; Bhat NA; Chak P; Pereira S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016604. PubMed ID: 14995733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approach to analysis of all-dielectric free-form antenna systems.
    Fesenko VI; Kupriianov AS; Sayanskiy A; Shcherbinin VI; Trubin A; Tuz VR
    Opt Express; 2019 Aug; 27(16):22363-22374. PubMed ID: 31510531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vectorial modal analysis of dielectric waveguides based on a coupled transverse-mode integral equation. II. Numerical analysis.
    Chang HW; Wu TL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1478-87. PubMed ID: 16715167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-independent attenuation in evanescent-field sensors.
    Gnewuch H; Renner H
    Appl Opt; 1995 Mar; 34(9):1473-83. PubMed ID: 21037683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocity theorem and perturbation theory for photonic crystal waveguides.
    Michaelis D; Peschel U; Wächter C; Bräuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065601. PubMed ID: 14754258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogenization of Maxwell's equations in periodic composites: boundary effects and dispersion relations.
    Markel VA; Schotland JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066603. PubMed ID: 23005233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems.
    Kristensen PT; de Lasson JR; Gregersen N
    Opt Lett; 2014 Nov; 39(22):6359-62. PubMed ID: 25490468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigorous time-domain analysis of dielectric optical waveguides using Hertzian potentials formulation.
    Massaro A; Rozzi T
    Opt Express; 2006 Mar; 14(5):2027-36. PubMed ID: 19503534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides.
    Pintus P
    Opt Express; 2014 Jun; 22(13):15737-56. PubMed ID: 24977833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-way coupled mode formalism that satisfies energy conservation for impedance boundaries in underwater acoustics.
    Stotts SA; Koch RA
    J Acoust Soc Am; 2015 Nov; 138(5):3383-96. PubMed ID: 26627810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.