These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 12786531)
1. Random symmetric matrices with a constraint: the spectral density of random impedance networks. Stäring J; Mehlig B; Fyodorov YV; Luck JM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):047101. PubMed ID: 12786531 [TBL] [Abstract][Full Text] [Related]
2. Commutative law for products of infinitely large isotropic random matrices. Burda Z; Livan G; Swiech A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022107. PubMed ID: 24032775 [TBL] [Abstract][Full Text] [Related]
3. Spectrum of the product of independent random Gaussian matrices. Burda Z; Janik RA; Waclaw B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041132. PubMed ID: 20481702 [TBL] [Abstract][Full Text] [Related]
4. Cavity approach to the spectral density of sparse symmetric random matrices. Rogers T; Castillo IP; Kühn R; Takeda K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031116. PubMed ID: 18851002 [TBL] [Abstract][Full Text] [Related]
5. Free random Lévy and Wigner-Lévy matrices. Burda Z; Jurkiewicz J; Nowak MA; Papp G; Zahed I Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051126. PubMed ID: 17677041 [TBL] [Abstract][Full Text] [Related]
6. Spectral domain of large nonsymmetric correlated Wishart matrices. Vinayak ; Benet L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042109. PubMed ID: 25375440 [TBL] [Abstract][Full Text] [Related]
7. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites. Olekhno NA; Beltukov YM Phys Rev E; 2018 May; 97(5-1):050101. PubMed ID: 29906883 [TBL] [Abstract][Full Text] [Related]
8. Spectral density of a Wishart model for nonsymmetric correlation matrices. Vinayak Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042130. PubMed ID: 24266424 [TBL] [Abstract][Full Text] [Related]
9. Density of states for almost-diagonal random matrices. Yevtushenko O; Kravtsov VE Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026104. PubMed ID: 14995517 [TBL] [Abstract][Full Text] [Related]
10. Singular-potential random-matrix model arising in mean-field glassy systems. Akemann G; Villamaina D; Vivo P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062146. PubMed ID: 25019763 [TBL] [Abstract][Full Text] [Related]
11. Spectral relations between products and powers of isotropic random matrices. Burda Z; Nowak MA; Swiech A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061137. PubMed ID: 23367923 [TBL] [Abstract][Full Text] [Related]
12. Eigenvalue spectra of random matrices for neural networks. Rajan K; Abbott LF Phys Rev Lett; 2006 Nov; 97(18):188104. PubMed ID: 17155583 [TBL] [Abstract][Full Text] [Related]
13. Eigenvalue spectra of asymmetric random matrices for multicomponent neural networks. Wei Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066116. PubMed ID: 23005171 [TBL] [Abstract][Full Text] [Related]
14. Theory for the conditioned spectral density of noninvariant random matrices. Pérez Castillo I; Metz FL Phys Rev E; 2018 Aug; 98(2-1):020102. PubMed ID: 30253505 [TBL] [Abstract][Full Text] [Related]
15. Eigenvalue Outliers of Non-Hermitian Random Matrices with a Local Tree Structure. Neri I; Metz FL Phys Rev Lett; 2016 Nov; 117(22):224101. PubMed ID: 27925747 [TBL] [Abstract][Full Text] [Related]
16. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices. Dhesi GS; Ausloos M Phys Rev E; 2016 Jun; 93(6):062115. PubMed ID: 27415216 [TBL] [Abstract][Full Text] [Related]
17. Comment on "Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices". Forrester PJ; Trinh AK Phys Rev E; 2019 Mar; 99(3-2):036101. PubMed ID: 30999531 [TBL] [Abstract][Full Text] [Related]
18. Extreme value statistics of eigenvalues of Gaussian random matrices. Dean DS; Majumdar SN Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041108. PubMed ID: 18517579 [TBL] [Abstract][Full Text] [Related]
19. Spacing ratio characterization of the spectra of directed random networks. Peron T; de Resende BMF; Rodrigues FA; Costa LDF; Méndez-Bermúdez JA Phys Rev E; 2020 Dec; 102(6-1):062305. PubMed ID: 33465954 [TBL] [Abstract][Full Text] [Related]
20. Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Ipsen JR; Kieburg M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032106. PubMed ID: 24730789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]