These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12786580)

  • 21. Apparent electron-phonon interaction in strongly correlated systems.
    Rösch O; Gunnarsson O
    Phys Rev Lett; 2004 Dec; 93(23):237001. PubMed ID: 15601188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlocal composite spin-lattice polarons in high temperature superconductors.
    De Filippis G; Cataudella V; Mishchenko AS; Nagaosa N
    Phys Rev Lett; 2007 Oct; 99(14):146405. PubMed ID: 17930694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudogap Isotope Effect as a Probe of Bipolaron Mechanism in High Temperature Superconductors.
    Lakhno VD
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Violation of the Wiedemann-Franz law in a single-electron transistor.
    Kubala B; König J; Pekola J
    Phys Rev Lett; 2008 Feb; 100(6):066801. PubMed ID: 18352503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron-molecular-vibration coupling for small polarons in DNAs.
    Taniguchi M; Kawai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061909. PubMed ID: 16485976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Formation of Bipolaron-Exciton Complexes in Conducting Polymers.
    Ribeiro Junior LA; Ferreira Monteiro F; Enders BG; de Almeida Fonseca AL; E Silva GM; da Cunha WF
    J Phys Chem A; 2018 Apr; 122(15):3866-3872. PubMed ID: 29608859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin Hall effect from bipolaron dynamics in organics.
    Miao Y; Li D; Zhang H; Ren J; Hu G
    Phys Chem Chem Phys; 2023 Mar; 25(11):7763-7771. PubMed ID: 36857654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible formation of chiral polarons in graphene.
    Kandemir BS
    J Phys Condens Matter; 2013 Jan; 25(2):025302. PubMed ID: 23196977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-Hall conductivity in electron-phonon coupled systems.
    Grimaldi C; Cappelluti E; Marsiglio F
    Phys Rev Lett; 2006 Aug; 97(6):066601. PubMed ID: 17026184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonant coupling of bound excitons with LO phonons in ZnO: excitonic polaron states and Fano interference.
    Xu SJ; Xiong SJ; Shi SL
    J Chem Phys; 2005 Dec; 123(22):221105. PubMed ID: 16375462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-polaron based holograms in LiNbO₃ in the visible spectrum.
    Brüning H; Dieckmann V; Schoke B; Voit KM; Imlau M; Corradi G; Merschjann C
    Opt Express; 2012 Jun; 20(12):13326-36. PubMed ID: 22714361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Test of the Wiedemann-Franz law in an optimally doped cuprate.
    Bel R; Behnia K; Proust C; van der Linden P; Maude D; Vedeneev SI
    Phys Rev Lett; 2004 Apr; 92(17):177003. PubMed ID: 15169184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spin transport and bipolaron density in organic polymers.
    Ingenhoven P; Egger R; Zülicke U
    J Phys Condens Matter; 2009 Oct; 21(41):415302. PubMed ID: 21693983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonon-drag thermopower and hot-electron energy-loss rate in a Rashba spin-orbit coupled two-dimensional electron system.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jul; 25(26):265301. PubMed ID: 23751509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe.
    Dong JK; Tokiwa Y; Bud'ko SL; Canfield PC; Gegenwart P
    Phys Rev Lett; 2013 Apr; 110(17):176402. PubMed ID: 23679749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio electron propagators in molecules with strong electron-phonon interaction. I. Phonon averages.
    Dahnovsky Y
    J Chem Phys; 2007 Jun; 126(23):234111. PubMed ID: 17600408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.