These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 12787)

  • 1. Proton-dependent dissociation equilibrium of hemoglobin. 1. A 700-nanometer light-scattering study on horse methemoglobin in the pH range 4.8 to 7.2.
    Schroeder E; Wollmer A; Kubicki J; Ohlenbusch HD
    Biochemistry; 1976 Dec; 15(26):5693-7. PubMed ID: 12787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the alkaline tetramer leads to dimer dissociation in liganded human hemoglobin: a laser light-scattering stopped-flow study.
    Flamig DP; Parkhurst LJ
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3814-6. PubMed ID: 20633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-dependent dissociation equilibrium of hemoglobin. 2. Surface pressure measurements in monolayers of horse hemoglobin (III).
    Kubicki J; Ohlenbusch HD; Schroeder E; Wollmer A
    Biochemistry; 1976 Dec; 15(26):5698-702. PubMed ID: 12788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-scattering investigations of the subunit dissociation of human hemoglobin A. Effects of the aliphatic acid salts.
    Herskovits TT; Ibanez VS
    Biochemistry; 1976 Dec; 15(26):5715-21. PubMed ID: 1009084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular dissociation of ferrihemoglobin derivatives.
    White SL
    J Biol Chem; 1975 Feb; 250(4):1263-8. PubMed ID: 234449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic light scattering studies on the dissociation of hemoglobin from Lumbricus terrestris.
    Goss DJ; Parkhurst LJ; Görisch H
    Biochemistry; 1975 Dec; 14(25):5461-4. PubMed ID: 56
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varying apparent rate constant: determination of uptake and release of protons during tetramer-dimer dissociation in human hemoglobin A.
    Babalola JO; Babarinde NA; Akingbola TS
    Ital J Biochem; 2005; 54(3-4):240-7. PubMed ID: 16688933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The detection of hemoglobin dimers by intrinsic fluorescence.
    Hirsch RE; Squires NA; Discepola C; Nagel RL
    Biochem Biophys Res Commun; 1983 Oct; 116(2):712-8. PubMed ID: 6651833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The uptake of protons by heme-linked ionizable groups on azide binding to methemoglobin.
    Okonjo KO; Vega-Catalan FJ
    Eur J Biochem; 1987 Dec; 169(2):413-6. PubMed ID: 2826144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PH dependent volume changes accompanying the binding reactions of human and pigeon methemoglobins.
    Ogunmola GB
    Biophys Chem; 1980 Feb; 11(1):23-7. PubMed ID: 7357063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic mobilities and diffusion coefficients of hemoglobin at high pH.
    Haas DD; Ware BR
    Biochemistry; 1978 Nov; 17(23):4946-50. PubMed ID: 31170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of p-hydroxymercuribenzoate binding on the visible absorption spectrum of methemoglobin.
    Olson JS
    J Biol Chem; 1976 Jan; 251(2):441-6. PubMed ID: 1392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new relaxed state in horse methemoglobin characterized by crystallographic studies.
    Sankaranarayanan R; Biswal BK; Vijayan M
    Proteins; 2005 Aug; 60(3):547-51. PubMed ID: 15887226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the acid and alkaline dissociation of earthworm hemoglobin, Lumbricus terrestris, by front-face fluorescence spectroscopy.
    Harrington JP; Hirsch RE
    Biochim Biophys Acta; 1991 Feb; 1076(3):351-8. PubMed ID: 2001383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin.
    Robinson VL; Smith BB; Arnone A
    Biochemistry; 2003 Sep; 42(34):10113-25. PubMed ID: 12939139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR relaxation of protein and water protons in methemoglobin solutions.
    Eisenstadt M
    Biophys J; 1981 Mar; 33(3):469-74. PubMed ID: 7225516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state.
    Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP
    Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ionic strength and pH on the aggregation properties of zinc-free insulin studied by static and dynamic laser light scattering.
    Kadima W; Ogendal L; Bauer R; Kaarsholm N; Brodersen K; Hansen JF; Porting P
    Biopolymers; 1993 Nov; 33(11):1643-57. PubMed ID: 8241425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual effects of proton and sodium chloride on oxygenation of liganded human hemoglobin.
    Lepeshkevich SV; Dzhagarov BM
    FEBS J; 2005 Dec; 272(23):6109-19. PubMed ID: 16302974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and kinetic studies of oxygen binding to the haemocyanin from the freshwater snail Lymnaea stagnalis.
    Dawson A; Wood EJ
    Biochem J; 1982 Oct; 207(1):145-53. PubMed ID: 7181856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.