These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12787112)

  • 1. How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals.
    Zayats AV; Salomon L; De Fornel F
    J Microsc; 2003 Jun; 210(Pt 3):344-9. PubMed ID: 12787112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical bistability in nonlinear surface-plasmon polaritonic crystals.
    Wurtz GA; Pollard R; Zayats AV
    Phys Rev Lett; 2006 Aug; 97(5):057402. PubMed ID: 17026140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses.
    Gérard D; Salomon L; de Fornel F; Zayats A
    Opt Express; 2004 Aug; 12(16):3652-63. PubMed ID: 19483896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of radiative losses of surface polaritons on nanostructured thin metal films.
    Gérard D; Salomon L; de Fornel F; Zayats AV
    Opt Lett; 2005 Apr; 30(7):780-2. PubMed ID: 15832936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals.
    Alfaro-Mozaz FJ; Rodrigo SG; Vélez S; Dolado I; Govyadinov A; Alonso-González P; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nano Lett; 2021 Sep; 21(17):7109-7115. PubMed ID: 34414765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal.
    Dickson W; Wurtz GA; Evans PR; Pollard RJ; Zayats AV
    Nano Lett; 2008 Jan; 8(1):281-6. PubMed ID: 18085813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays.
    Ye YH; Zhang JY
    Opt Lett; 2005 Jun; 30(12):1521-3. PubMed ID: 16007794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly confined surface plasmon polaritons in the ultraviolet region.
    Chubchev ED; Nechepurenko IA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2018 Apr; 26(7):9050-9062. PubMed ID: 29715863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film.
    Salomon L; Grillot F; Zayats AV; de Fornel F
    Phys Rev Lett; 2001 Feb; 86(6):1110-3. PubMed ID: 11178022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical transmission of planar metallic films coated by two-dimensional colloidal crystals.
    Lu H; Tang C; Du W; Liu F; Xing Y; Zhan P; Chen Z; Wang Z
    Opt Express; 2014 May; 22(10):11698-706. PubMed ID: 24921292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field expulsion and reconfiguration in polaritonic photonic crystals.
    Huang KC; Bienstman P; Joannopoulos JD; Nelson KA; Fan S
    Phys Rev Lett; 2003 May; 90(19):196402. PubMed ID: 12785962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization of Surface Plasmon Polariton and Photonic Crystal Modes in Bragg Mirror with Periodically Profiled Metal Film.
    Sosnova MV; Mamykin SV; Korovin AV; Dmitruk NL
    Nanoscale Res Lett; 2016 Dec; 11(1):144. PubMed ID: 26979722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons.
    Herzig Sheinfux H; Jung M; Orsini L; Ceccanti M; Mahalanabish A; Martinez-Cercós D; Torre I; Barcons Ruiz D; Janzen E; Edgar JH; Pruneri V; Shvets G; Koppens FHL
    ACS Nano; 2023 Apr; 17(8):7377-7383. PubMed ID: 37010352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.
    Dickson W; Beckett S; McClatchey C; Murphy A; O'Connor D; Wurtz GA; Pollard R; Zayats AV
    Adv Mater; 2015 Oct; 27(39):5974-80. PubMed ID: 26315672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model of the optical response of periodically structured metallic films.
    Benabbas A; Halté V; Bigot JY
    Opt Express; 2005 Oct; 13(22):8730-45. PubMed ID: 19498906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.
    Lin L; Roberts A
    Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons.
    Dubrovkin AM; Qiang B; Salim T; Nam D; Zheludev NI; Wang QJ
    Nat Commun; 2020 Apr; 11(1):1863. PubMed ID: 32313010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of light through thin silver films via surface plasmon-polaritons.
    Giannattasio A; Hooper I; Barnes W
    Opt Express; 2004 Nov; 12(24):5881-6. PubMed ID: 19488227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental Limits to the Coupling between Light and 2D Polaritons by Small Scatterers.
    Dias EJC; García de Abajo FJ
    ACS Nano; 2019 May; 13(5):5184-5197. PubMed ID: 30916551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Purcell effect in photonic and plasmonic crystals with losses.
    Iwase H; Englund D; Vucković J
    Opt Express; 2010 Aug; 18(16):16546-60. PubMed ID: 20721044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.