BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 12787585)

  • 1. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.
    Valkirs AO; Seligman PF; Haslbeck E; Caso JS
    Mar Pollut Bull; 2003 Jun; 46(6):763-79. PubMed ID: 12787585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper emissions from antifouling paint on recreational vessels.
    Schiff K; Diehl D; Valkirs A
    Mar Pollut Bull; 2004 Feb; 48(3-4):371-7. PubMed ID: 14972590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved estimates of environmental copper release rates from antifouling products.
    Finnie AA
    Biofouling; 2006; 22(5-6):279-91. PubMed ID: 17110352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings.
    Tribou M; Swain G
    Biofouling; 2010 Jan; 26(1):47-56. PubMed ID: 20390556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements.
    Warnken J; Dunn RJ; Teasdale PR
    Mar Pollut Bull; 2004 Nov; 49(9-10):833-43. PubMed ID: 15530527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of copper and zinc from spent antifouling paint particles.
    Singh N; Turner A
    Environ Pollut; 2009 Feb; 157(2):371-6. PubMed ID: 19013700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofouling communities on test panels coated with TBT and TBT-free copper based antifouling paints.
    Jelic-Mrcelic G; Sliskovic M; Antolic B
    Biofouling; 2006; 22(5-6):293-302. PubMed ID: 17110353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.
    Zargiel KA; Swain GW
    Biofouling; 2014 Jan; 30(1):115-29. PubMed ID: 24279838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of boat paint chips on the distribution and availability of copper in an English ria.
    Turner A; Fitzer S; Glegg GA
    Environ Pollut; 2008 Jan; 151(1):176-81. PubMed ID: 17418467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifouling paints leach copper in excess - study of metal release rates and efficacy along a salinity gradient.
    Lagerström M; Ytreberg E; Wiklund AE; Granhag L
    Water Res; 2020 Nov; 186():116383. PubMed ID: 32916622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diatom community structure on commercially available ship hull coatings.
    Zargiel KA; Coogan JS; Swain GW
    Biofouling; 2011 Oct; 27(9):955-65. PubMed ID: 21932984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential for translocation of marine species via small-scale disruptions to antifouling surfaces.
    Piola RF; Johnston EL
    Biofouling; 2008; 24(3):145-55. PubMed ID: 18327709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks.
    Holm ER; Schultz MP; Haslbeck EG; Talbott WJ; Field AJ
    Biofouling; 2004; 20(4-5):219-26. PubMed ID: 15621643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus.
    Candries M; Atlar M; Mesbahi E; Pazouki K
    Biofouling; 2003 Apr; 19 Suppl():27-36. PubMed ID: 14618701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of grooming on a copper ablative coating: a six year study.
    Tribou M; Swain G
    Biofouling; 2017 Jul; 33(6):494-504. PubMed ID: 28604166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups.
    Majumdar P; Lee E; Patel N; Ward K; Stafslien SJ; Daniels J; Chisholm BJ; Boudjouk P; Callow ME; Callow JA; Thompson SE
    Biofouling; 2008; 24(3):185-200. PubMed ID: 18368587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conceptual issues in designing a policy to phase out metal-based antifouling paints on recreational boats in San Diego Bay.
    Carson RT; Damon M; Johnson LT; Gonzalez JA
    J Environ Manage; 2009 Jun; 90(8):2460-8. PubMed ID: 19376635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.