These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 12787632)
1. Evaluation of different calorimetric methods to determine the glass transition temperature and molecular mobility below T(g) for amorphous drugs. Weuts I; Kempen D; Six K; Peeters J; Verreck G; Brewster M; Van den Mooter G Int J Pharm; 2003 Jun; 259(1-2):17-25. PubMed ID: 12787632 [TBL] [Abstract][Full Text] [Related]
2. Characterization of glassy itraconazole: a comparative study of its molecular mobility below T(g) with that of structural analogues using MTDSC. Six K; Verreck G; Peeters J; Augustijns P; Kinget R; Van den Mooter G Int J Pharm; 2001 Feb; 213(1-2):163-73. PubMed ID: 11165104 [TBL] [Abstract][Full Text] [Related]
3. Glass transition and enthalpy relaxation of amorphous lactose glass. Haque MK; Kawai K; Suzuki T Carbohydr Res; 2006 Aug; 341(11):1884-9. PubMed ID: 16709405 [TBL] [Abstract][Full Text] [Related]
4. Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using the Williams-Watts decay function. Van den Mooter G; Augustijns P; Kinget R Eur J Pharm Biopharm; 1999 Jul; 48(1):43-8. PubMed ID: 10477327 [TBL] [Abstract][Full Text] [Related]
5. The slow relaxation dynamics in active pharmaceutical ingredients studied by DSC and TSDC: Voriconazole, miconazole and itraconazole. Ramos JJ; Diogo HP Int J Pharm; 2016 Mar; 501(1-2):39-48. PubMed ID: 26826567 [TBL] [Abstract][Full Text] [Related]
6. Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry. Van Den Mooter G; Craig DQ; Royall PG J Pharm Sci; 2001 Aug; 90(8):996-1003. PubMed ID: 11536203 [TBL] [Abstract][Full Text] [Related]
7. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition. Bhugra C; Shmeis R; Krill SL; Pikal MJ Pharm Res; 2006 Oct; 23(10):2277-90. PubMed ID: 16933094 [TBL] [Abstract][Full Text] [Related]
8. A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures. Mao C; Prasanth Chamarthy S; Byrn SR; Pinal R Pharm Res; 2006 Oct; 23(10):2269-76. PubMed ID: 16933097 [TBL] [Abstract][Full Text] [Related]
9. Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. Bhugra C; Shmeis R; Krill SL; Pikal MJ J Pharm Sci; 2008 Jan; 97(1):455-72. PubMed ID: 17854050 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. Bhugra C; Rambhatla S; Bakri A; Duddu SP; Miller DP; Pikal MJ; Lechuga-Ballesteros D J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303 [TBL] [Abstract][Full Text] [Related]
11. Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach. Mao C; Chamarthy SP; Pinal R Pharm Res; 2006 Aug; 23(8):1906-17. PubMed ID: 16858653 [TBL] [Abstract][Full Text] [Related]
12. Glass transition and enthalpy relaxation of amorphous food saccharides: a review. Liu Y; Bhandari B; Zhou W J Agric Food Chem; 2006 Aug; 54(16):5701-17. PubMed ID: 16881667 [TBL] [Abstract][Full Text] [Related]
13. Different measures of molecular mobility: comparison between calorimetric and thermally stimulated current relaxation times below Tg and correlation with dielectric relaxation times above Tg. Bhugra C; Shmeis R; Krill SL; Pikal MJ J Pharm Sci; 2008 Oct; 97(10):4498-515. PubMed ID: 18271035 [TBL] [Abstract][Full Text] [Related]
14. Salt formation in solid dispersions consisting of polyacrylic acid as a carrier and three basic model compounds resulting in very high glass transition temperatures and constant dissolution properties upon storage. Weuts I; Kempen D; Verreck G; Peeters J; Brewster M; Blaton N; Van den Mooter G Eur J Pharm Sci; 2005; 25(4-5):387-93. PubMed ID: 15894472 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole. Tarnacka M; Madejczyk O; Adrjanowicz K; Pionteck J; Kaminska E; KamiĆski K; Paluch M J Chem Phys; 2015 Jun; 142(22):224507. PubMed ID: 26071720 [TBL] [Abstract][Full Text] [Related]
16. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. Aso Y; Yoshioka S; Kojima S J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195 [TBL] [Abstract][Full Text] [Related]
17. Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64. Weuts I; Kempen D; Decorte A; Verreck G; Peeters J; Brewster M; Van den Mooter G Eur J Pharm Sci; 2005 Jun; 25(2-3):313-20. PubMed ID: 15911228 [TBL] [Abstract][Full Text] [Related]
19. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846 [TBL] [Abstract][Full Text] [Related]
20. Correlating thermodynamic and kinetic parameters with amorphous stability. Graeser KA; Patterson JE; Zeitler JA; Gordon KC; Rades T Eur J Pharm Sci; 2009 Jun; 37(3-4):492-8. PubMed ID: 19394421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]