BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 127883)

  • 1. Structural changes in myosin during contraction and the state of ATP in the intact frog muscle.
    Bárány M; Bárány K; Burt CT; Glonek T; Myers TC
    J Supramol Struct; 1975; 3(2):125-40. PubMed ID: 127883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of myosin, actin and ATP in the intact muscle.
    Bárány M; Bárány K
    J Mechanochem Cell Motil; 1973 May; 2(1):51-9. PubMed ID: 4780819
    [No Abstract]   [Full Text] [Related]  

  • 3. Ultrastructure of the contractile system of striated skeletal muscle and the processes of muscular contraction. I. Ultrastructure of the myofibril and source of energy.
    Morel JE; Pinset-Härström I
    Biomedicine; 1975 Mar; 22(2):88-96. PubMed ID: 764891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An activation mechanism for ATP cleavage in muscle.
    Harrington WF; Reisler E; Burke M
    J Supramol Struct; 1975; 3(2):112-24. PubMed ID: 127882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the higher Ca(2+)-activation of the regulated actin-activated myosin ATPase observed with Dictyostelium/Tetrahymena actin chimeras.
    Matsuura Y; Stewart M; Kawamoto M; Kamiya N; Saeki K; Yasunaga T; Wakabayashi T
    J Mol Biol; 2000 Feb; 296(2):579-95. PubMed ID: 10669610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives.
    Oplatka A; Gadasi H; Tirosh R; Lamed Y; Muhlrad A; Liron N
    J Mechanochem Cell Motil; 1974 Mar; 2(4):295-306. PubMed ID: 4277009
    [No Abstract]   [Full Text] [Related]  

  • 7. Calcium regulation of cardiac myofibrillar activation: effects of MgATP.
    Solaro RJ
    J Supramol Struct; 1975; 3(4):368-75. PubMed ID: 127891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of antibodies to light meromyosin on glycerinated muscle fibres and on actomyosin adenosinetriphosphatases.
    Szöör A; Kalamkarova M; Rapcsák M; Kofman E; Aleynikova K; Richter P
    Acta Physiol Hung; 1983; 61(1-2):69-75. PubMed ID: 6227205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction.
    Lampinen MJ; Noponen T
    J Theor Biol; 2005 Oct; 236(4):397-421. PubMed ID: 15919094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced positive feedback regulation between myosin crossbridge and cardiac troponin C in fast skeletal myofibrils.
    Morimoto S; Ohtsuki I
    J Biochem; 1996 Apr; 119(4):737-42. PubMed ID: 8743577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.
    Boxer LA; Stossel TP
    J Clin Invest; 1976 Apr; 57(4):964-76. PubMed ID: 133121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of frog muscle myosin subfragment 1 and actin.
    Ferenczi MA; Homsher E; Trentham DR; Weeds AG
    Biochem J; 1978 Apr; 171(1):155-63. PubMed ID: 148276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation-dephosphorylation of the 18,000-dalton light chain of myosin during the contraction-relaxation cycle of frog muscle.
    Bárány K; Bárány M; Gillis JM; Kushmerick MJ
    J Biol Chem; 1979 May; 254(9):3617-23. PubMed ID: 107176
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of myosin to actin in myofibrils during ATP hydrolysis.
    Duong AM; Reisler E
    Biochemistry; 1989 Feb; 28(3):1307-13. PubMed ID: 2523735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of relaxation by N-ethylmaleimide treatment of myosin.
    Pemrick S; Weber A
    Biochemistry; 1976 Nov; 15(23):5193-8. PubMed ID: 136272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin-activated adenosine triphosphatase activity of native and N-ethylmaleimide-modified cardiac myosin from normal and thyrotoxic rabbits.
    Banerjee SK; Morkin E
    Circ Res; 1977 Nov; 41(5):630-4. PubMed ID: 143352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin stress fibers are at a tipping point between conventional shortening and rapid disassembly at physiological levels of MgATP.
    Matsui TS; Ito K; Kaunas R; Sato M; Deguchi S
    Biochem Biophys Res Commun; 2010 May; 395(3):301-6. PubMed ID: 20353757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.