These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12788552)

  • 21. An oxygen-rich fill-and-flow channel biosensor.
    Zhao M; Hibbert DB; Gooding JJ
    Biosens Bioelectron; 2003 May; 18(5-6):827-33. PubMed ID: 12706598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution.
    Liu Y; Yu X; Zhao R; Shangguan DH; Bo Z; Liu G
    Biosens Bioelectron; 2003 Oct; 18(11):1419-27. PubMed ID: 12896844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric quartz crystal resonators applied for immunosensing and affinity interaction studies.
    Skládal P
    Methods Mol Biol; 2009; 504():37-50. PubMed ID: 19159089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef.
    Cho IH; Bhandari P; Patel P; Irudayaraj J
    Biosens Bioelectron; 2015 Feb; 64():171-6. PubMed ID: 25216452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment process. Part I. A novel design of BOD biosensor for easy renewal of bio-receptor.
    Liu J; Olsson G; Mattiasson B
    Biosens Bioelectron; 2004 Oct; 20(3):562-70. PubMed ID: 15494240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring bacterial growth by tapered fiber and changes in evanescent field.
    Maraldo D; Shankar PM; Mutharasan R
    Biosens Bioelectron; 2006 Jan; 21(7):1339-44. PubMed ID: 15913977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro flow sensor based on two closely spaced amperometric sensors.
    Wu J; Ye J
    Lab Chip; 2005 Dec; 5(12):1344-7. PubMed ID: 16286963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation.
    Escamilla-Gómez V; Campuzano S; Pedrero M; Pingarrón JM
    Biosens Bioelectron; 2009 Jul; 24(11):3365-71. PubMed ID: 19481924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.
    Huang F; Zhang H; Wang L; Lai W; Lin J
    Biosens Bioelectron; 2018 Feb; 100():583-590. PubMed ID: 29032045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation into the suitability of using three electronic nose instruments for the detection and discrimination of bacteria types.
    Green GC; Chan AD; Goubran RA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1850-3. PubMed ID: 17946073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.
    Taylor AD; Ladd J; Yu Q; Chen S; Homola J; Jiang S
    Biosens Bioelectron; 2006 Dec; 22(5):752-8. PubMed ID: 16635568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific detection of live Escherichia coli O157:H7 using tetracysteine-tagged PP01 bacteriophage.
    Wu L; Song Y; Luan T; Ma L; Su L; Wang S; Yan X
    Biosens Bioelectron; 2016 Dec; 86():102-108. PubMed ID: 27341136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a nanomechanical biosensor for analysis of endocrine disrupting chemicals.
    Dutta P; Hill K; Datskos PG; Sepaniak MJ
    Lab Chip; 2007 Sep; 7(9):1184-91. PubMed ID: 17713618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Series quartz crystal sensor for remote bacteria population monitoring in raw milk via the Internet.
    Chang KS; Jang HD; Lee CF; Lee YG; Yuan CJ; Lee SH
    Biosens Bioelectron; 2006 Feb; 21(8):1581-90. PubMed ID: 16137878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk.
    Chen R; Li H; Zhang H; Zhang S; Shi W; Shen J; Wang Z
    Anal Bioanal Chem; 2013 Aug; 405(21):6783-9. PubMed ID: 23836085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing.
    Liébana S; Lermo A; Campoy S; Cortés MP; Alegret S; Pividori MI
    Biosens Bioelectron; 2009 Oct; 25(2):510-3. PubMed ID: 19716286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.
    Fronczek CF; You DJ; Yoon JY
    Biosens Bioelectron; 2013 Feb; 40(1):342-9. PubMed ID: 22939509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CCD based fiber-optic spectrometer detection.
    Kapoor R
    Methods Mol Biol; 2009; 503():435-45. PubMed ID: 19151957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk.
    Berlina AN; Taranova NA; Zherdev AV; Vengerov YY; Dzantiev BB
    Anal Bioanal Chem; 2013 May; 405(14):4997-5000. PubMed ID: 23494278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.