These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12788697)

  • 21. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.
    Bettarel Y; Amblard C; Sime-Ngando T; Carrias JF; Sargos D; Garabétian F; Lavandier P
    Microb Ecol; 2003 Feb; 45(2):119-27. PubMed ID: 12545309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colonization and release processes of viruses and prokaryotes on artificial marine macroaggregates.
    Bettarel Y; Motegi C; Weinbauer MG; Mari X
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv216. PubMed ID: 26567907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fate of heterotrophic bacteria in Lake Tanganyika (East Africa).
    Pirlot S; Unrein F; Descy JP; Servais P
    FEMS Microbiol Ecol; 2007 Dec; 62(3):354-64. PubMed ID: 17983442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom.
    Riemann L; Steward GF; Azam F
    Appl Environ Microbiol; 2000 Feb; 66(2):578-87. PubMed ID: 10653721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The predatory soil flagellate Heteromita globosa stimulates toluene biodegradation by a Pseudomonas sp.
    Mattison RG; Harayama S
    FEMS Microbiol Lett; 2001 Jan; 194(1):39-45. PubMed ID: 11150663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feeding and growth of the marine heterotrophic nanoflagellates, Procryptobia sorokini and Paraphysomonas imperforata on a bacterium, Pseudoalteromonas sp. with an inducible defence against grazing.
    Tophøj J; Wollenberg RD; Sondergaard TE; Eriksen NT
    PLoS One; 2018; 13(4):e0195935. PubMed ID: 29652905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Culturing bias in marine heterotrophic flagellates analyzed through seawater enrichment incubations.
    del Campo J; Balagué V; Forn I; Lekunberri I; Massana R
    Microb Ecol; 2013 Oct; 66(3):489-99. PubMed ID: 23749062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dominant marine heterotrophic flagellates are adapted to natural planktonic bacterial abundances.
    Rodríguez-Martínez R; Vaqué D; Forn I; Massana R
    Environ Microbiol; 2022 May; 24(5):2421-2434. PubMed ID: 35080092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for bacterial colonization of sinking aggregates.
    Bearon RN
    Bull Math Biol; 2007 Jan; 69(1):417-31. PubMed ID: 16835807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow.
    Gram L; Grossart HP; Schlingloff A; Kiørboe T
    Appl Environ Microbiol; 2002 Aug; 68(8):4111-6. PubMed ID: 12147515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria.
    Jürgens K; Matz C
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):413-34. PubMed ID: 12448740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates.
    Matz C; Deines P; Boenigk J; Arndt H; Eberl L; Kjelleberg S; Jürgens K
    Appl Environ Microbiol; 2004 Mar; 70(3):1593-9. PubMed ID: 15006783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps.
    LeCleir GR; DeBruyn JM; Maas EW; Boyd PW; Wilhelm SW
    FEMS Microbiol Ecol; 2014 Jan; 87(1):153-63. PubMed ID: 24020443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Channeling of bacterioplanktonic production toward phagotrophic flagellates and ciliates under different seasonal conditions in a river.
    Iriberri J; Ayo B; Unanue M; Barcina I; Egea L
    Microb Ecol; 1993 Sep; 26(2):111-24. PubMed ID: 24190008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow).
    Weiss P; Schweitzer B; Amann R; Simon M
    Appl Environ Microbiol; 1996 Jun; 62(6):1998-2005. PubMed ID: 8787398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists.
    Weisse T
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):327-41. PubMed ID: 12448731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization.
    Jezbera J; Hornák K; Simek K
    FEMS Microbiol Ecol; 2005 May; 52(3):351-63. PubMed ID: 16329920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High motility reduces grazing mortality of planktonic bacteria.
    Matz C; Jürgens K
    Appl Environ Microbiol; 2005 Feb; 71(2):921-9. PubMed ID: 15691949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mesocosm study of the changes in marine flagellate and ciliate communities in a crude oil bioremediation trial.
    Gertler C; Näther DJ; Gerdts G; Malpass MC; Golyshin PN
    Microb Ecol; 2010 Jul; 60(1):180-91. PubMed ID: 20393846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.