These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 12788715)
1. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Purdy KJ; Nedwell DB; Embley TM Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715 [TBL] [Abstract][Full Text] [Related]
2. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Mesbah NM; Abou-El-Ela SH; Wiegel J Microb Ecol; 2007 Nov; 54(4):598-617. PubMed ID: 17450395 [TBL] [Abstract][Full Text] [Related]
3. Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Zepp Falz K; Holliger C; Grosskopf R; Liesack W; Nozhevnikova AN; Müller B; Wehrli B; Hahn D Appl Environ Microbiol; 1999 Jun; 65(6):2402-8. PubMed ID: 10347020 [TBL] [Abstract][Full Text] [Related]
4. Local conditions structure unique archaeal communities in the anoxic sediments of meromictic Lake Kivu. Bhattarai S; Ross KA; Schmid M; Anselmetti FS; Bürgmann H Microb Ecol; 2012 Aug; 64(2):291-310. PubMed ID: 22430505 [TBL] [Abstract][Full Text] [Related]
5. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Newberry CJ; Webster G; Cragg BA; Parkes RJ; Weightman AJ; Fry JC Environ Microbiol; 2004 Mar; 6(3):274-87. PubMed ID: 14871211 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Orphan VJ; Hinrichs KU; Ussler W; Paull CK; Taylor LT; Sylva SP; Hayes JM; Delong EF Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Biddle JF; Cardman Z; Mendlovitz H; Albert DB; Lloyd KG; Boetius A; Teske A ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346 [TBL] [Abstract][Full Text] [Related]
8. Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Karr EA; Ng JM; Belchik SM; Sattley WM; Madigan MT; Achenbach LA Appl Environ Microbiol; 2006 Feb; 72(2):1663-6. PubMed ID: 16461723 [TBL] [Abstract][Full Text] [Related]
9. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Kendall MM; Wardlaw GD; Tang CF; Bonin AS; Liu Y; Valentine DL Appl Environ Microbiol; 2007 Jan; 73(2):407-14. PubMed ID: 17122405 [TBL] [Abstract][Full Text] [Related]
10. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Dhillon A; Lever M; Lloyd KG; Albert DB; Sogin ML; Teske A Appl Environ Microbiol; 2005 Aug; 71(8):4592-601. PubMed ID: 16085853 [TBL] [Abstract][Full Text] [Related]
11. Prokaryotic diversity in Zostera noltii-colonized marine sediments. Cifuentes A; Antón J; Benlloch S; Donnelly A; Herbert RA; Rodríguez-Valera F Appl Environ Microbiol; 2000 Apr; 66(4):1715-9. PubMed ID: 10742267 [TBL] [Abstract][Full Text] [Related]
12. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. Bowman JP; McCammon SA; Rea SM; McMeekin TA FEMS Microbiol Lett; 2000 Feb; 183(1):81-8. PubMed ID: 10650206 [TBL] [Abstract][Full Text] [Related]
13. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Inagaki F; Tsunogai U; Suzuki M; Kosaka A; Machiyama H; Takai K; Nunoura T; Nealson KH; Horikoshi K Appl Environ Microbiol; 2004 Dec; 70(12):7445-55. PubMed ID: 15574947 [TBL] [Abstract][Full Text] [Related]
14. Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Schwarz JI; Eckert W; Conrad R Syst Appl Microbiol; 2007 Apr; 30(3):239-54. PubMed ID: 16857336 [TBL] [Abstract][Full Text] [Related]
15. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
16. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Wei G; Li M; Li F; Li H; Gao Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9683-9697. PubMed ID: 27557722 [TBL] [Abstract][Full Text] [Related]
17. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
18. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
19. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Thomsen TR; Finster K; Ramsing NB Appl Environ Microbiol; 2001 Apr; 67(4):1646-56. PubMed ID: 11282617 [TBL] [Abstract][Full Text] [Related]
20. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]