BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12788758)

  • 1. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200.
    Cooper DC; Picardal FW; Schimmelmann A; Coby AJ
    Appl Environ Microbiol; 2003 Jun; 69(6):3517-25. PubMed ID: 12788758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction.
    Coby AJ; Picardal FW
    Environ Sci Technol; 2006 Jun; 40(12):3813-8. PubMed ID: 16830547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+.
    Coby AJ; Picardal FW
    Appl Environ Microbiol; 2005 Sep; 71(9):5267-74. PubMed ID: 16151113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments.
    Benaiges-Fernandez R; Offeddu FG; Margalef-Marti R; Palau J; Urmeneta J; Carrey R; Otero N; Cama J
    Chemosphere; 2020 Dec; 260():127554. PubMed ID: 32688313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.
    Zhu W; Shi M; Yu D; Liu C; Huang T; Wu F
    Sci Rep; 2016 Mar; 6():23718. PubMed ID: 27020166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides.
    Das A; Caccavo F
    Curr Microbiol; 2001 Mar; 42(3):151-4. PubMed ID: 11270646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.
    Senko JM; Dewers TA; Krumholz LR
    Appl Environ Microbiol; 2005 Nov; 71(11):7172-7. PubMed ID: 16269756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction.
    Notini L; Byrne JM; Tomaszewski EJ; Latta DE; Zhou Z; Scherer MM; Kappler A
    Environ Sci Technol; 2019 Aug; 53(15):8883-8891. PubMed ID: 31284712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32.
    Huang JH; Voegelin A; Pombo SA; Lazzaro A; Zeyer J; Kretzschmar R
    Environ Sci Technol; 2011 Sep; 45(18):7701-9. PubMed ID: 21819067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.
    Borch T; Masue Y; Kukkadapu RK; Fendorf S
    Environ Sci Technol; 2007 Jan; 41(1):166-72. PubMed ID: 17265943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotopes and iron oxide mineral products as markers of chemodenitrification.
    Jones LC; Peters B; Lezama Pacheco JS; Casciotti KL; Fendorf S
    Environ Sci Technol; 2015 Mar; 49(6):3444-52. PubMed ID: 25683572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate.
    Sheng H; Liu W; Wang Y; Ye L; Jing C
    Environ Pollut; 2024 Jun; 351():124008. PubMed ID: 38641038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC; Picardal FF; Coby AJ
    Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; Pentrák M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds.
    Weber KA; Picardal FW; Roden EE
    Environ Sci Technol; 2001 Apr; 35(8):1644-50. PubMed ID: 11329715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.