These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12788758)

  • 21. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
    Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM
    Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of ferric green rust by Shewanella putrefaciens.
    Jorand F; Zegeye A; Landry F; Ruby C
    Lett Appl Microbiol; 2007 Nov; 45(5):515-21. PubMed ID: 17868312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
    Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y
    Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation.
    Senko JM; Mohamed Y; Dewers TA; Krumholz LR
    Environ Sci Technol; 2005 Apr; 39(8):2529-36. PubMed ID: 15884345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfur-mediated electron shuttling during bacterial iron reduction.
    Flynn TM; O'Loughlin EJ; Mishra B; DiChristina TJ; Kemner KM
    Science; 2014 May; 344(6187):1039-42. PubMed ID: 24789972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ferrous Iron Oxidation under Varying pO
    Chen C; Thompson A
    Environ Sci Technol; 2018 Jan; 52(2):597-606. PubMed ID: 29192502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides.
    Huang JH; Elzinga EJ; Brechbuehl Y; Voegelin A; Kretzschmar R
    Environ Sci Technol; 2011 Apr; 45(7):2804-10. PubMed ID: 21375285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abiotic degradation of pentachloronitrobenzene by Fe(III): reactions on goethite and iron oxide nanoparticles.
    Klupinski TP; Chin YP; Traina SJ
    Environ Sci Technol; 2004 Aug; 38(16):4353-60. PubMed ID: 15382864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study.
    Handler RM; Beard BL; Johnson CM; Scherer MM
    Environ Sci Technol; 2009 Feb; 43(4):1102-7. PubMed ID: 19320165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1.
    Peng Z; Shi M; Xia K; Dong Y; Shi L
    Environ Pollut; 2020 Nov; 266(Pt 1):115413. PubMed ID: 32828026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic analysis of the bacterial reduction of goethite.
    Liu C; Kota S; Zachara JM; Fredrickson JK; Brinkman CK
    Environ Sci Technol; 2001 Jun; 35(12):2482-90. PubMed ID: 11432552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of sediment bioreduction and reoxidation on uranium sorption.
    Liu C; Zachara JM; Zhong L; Kukkadupa R; Szecsody JE; Kennedy DW
    Environ Sci Technol; 2005 Jun; 39(11):4125-33. PubMed ID: 15984791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32.
    Smeaton CM; Walshe GE; Smith AM; Hudson-Edwards KA; Dubbin WE; Wright K; Beale AM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2012 Dec; 46(23):12823-31. PubMed ID: 23126670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into nitrate-reducing Fe(II) oxidation by Diaphorobacter caeni LI3
    Yang G; Li S; Niu R; Hu M; Huang G; Pan D; Yan S; Liu T; Li X; Li F
    Sci Total Environ; 2024 Feb; 912():168720. PubMed ID: 38008321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.