BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12788946)

  • 1. Homodimeric quaternary structure is required for the in vivo function and thermal stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA triphosphatases.
    Hausmann S; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(33):30487-96. PubMed ID: 12788946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of homodimerization for the in vivo function of yeast RNA triphosphatase.
    Lehman K; Ho CK; Shuman S
    J Biol Chem; 2001 May; 276(18):14996-5002. PubMed ID: 11279098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation.
    Hausmann S; Ho CK; Schwer B; Shuman S
    J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional groups required for the stability of yeast RNA triphosphatase in vitro and in vivo.
    Bisaillon M; Shuman S
    J Biol Chem; 2001 Aug; 276(32):30514-20. PubMed ID: 11395522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins.
    Gong C; Smith P; Shuman S
    RNA; 2006 Aug; 12(8):1468-74. PubMed ID: 16809816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5'-triphosphatase.
    Mukai Y; Davie JK; Dent SY
    J Biol Chem; 2003 May; 278(21):18895-901. PubMed ID: 12637515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus.
    Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S
    J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent subunit interactions among fungal mRNA 5'-capping machineries.
    Takagi T; Cho EJ; Janoo RT; Polodny V; Takase Y; Keogh MC; Woo SA; Fresco-Cohen LD; Hoffman CS; Buratowski S
    Eukaryot Cell; 2002 Jun; 1(3):448-57. PubMed ID: 12455993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus.
    Ho CK; Schwer B; Shuman S
    Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase.
    Bisaillon M; Shuman S
    J Biol Chem; 2001 May; 276(20):17261-6. PubMed ID: 11279161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus.
    Gu M; Rajashankar KR; Lima CD
    Structure; 2010 Feb; 18(2):216-27. PubMed ID: 20159466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Schizosaccharomyces pombe RNA triphosphatase.
    Pei Y; Schwer B; Hausmann S; Shuman S
    Nucleic Acids Res; 2001 Jan; 29(2):387-96. PubMed ID: 11139608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus.
    Lima CD; Wang LK; Shuman S
    Cell; 1999 Nov; 99(5):533-43. PubMed ID: 10589681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo.
    Takase Y; Takagi T; Komarnitsky PB; Buratowski S
    Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control.
    Pei Y; Schwer B; Shuman S
    J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans.
    Pei Y; Schwer B; Saiz J; Fisher RP; Shuman S
    BMC Microbiol; 2001; 1():29. PubMed ID: 11737862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pct1+, which encodes a new DNA-binding partner of p85cdc10, is required for meiosis in the fission yeast Schizosaccharomyces pombe.
    Zhu Y; Takeda T; Nasmyth K; Jones N
    Genes Dev; 1994 Apr; 8(8):885-98. PubMed ID: 7926774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5.
    Pei Y; Shuman S
    J Biol Chem; 2002 May; 277(22):19639-48. PubMed ID: 11893740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase.
    Bisaillon M; Bougie I
    J Biol Chem; 2003 Sep; 278(36):33963-71. PubMed ID: 12819229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of baculovirus phosphatase identifies structural residues important for triphosphatase activity in vitro and in vivo.
    Martins A; Shuman S
    Biochemistry; 2002 Nov; 41(45):13403-9. PubMed ID: 12416985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.