These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12788946)

  • 21. Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate.
    Gong C; Shuman S
    J Biol Chem; 2002 May; 277(18):15317-24. PubMed ID: 11844801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5'-triphosphatase, which is essential for cell viability.
    Tsukamoto T; Shibagaki Y; Imajoh-Ohmi S; Murakoshi T; Suzuki M; Nakamura A; Gotoh H; Mizumoto K
    Biochem Biophys Res Commun; 1997 Oct; 239(1):116-22. PubMed ID: 9345280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus.
    Pei Y; Ho CK; Schwer B; Shuman S
    J Biol Chem; 1999 Oct; 274(41):28865-74. PubMed ID: 10506129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Saccharomyces cerevisiae RNA 5'-triphosphatase related to mRNA capping enzyme.
    Rodriguez CR; Takagi T; Cho EJ; Buratowski S
    Nucleic Acids Res; 1999 May; 27(10):2181-8. PubMed ID: 10219091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of the Schizosaccharomyces pombe gene encoding diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) asymmetrical hydrolase: sequence similarity with the histidine triad (HIT) protein family.
    Huang Y; Garrison PN; Barnes LD
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):925-32. PubMed ID: 8554540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes.
    Saha N; Schwer B; Shuman S
    J Biol Chem; 1999 Jun; 274(23):16553-62. PubMed ID: 10347220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes.
    Ho CK; Martins A; Shuman S
    J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1.
    Zhang M; Luo J; Ogiyama Y; Saiki R; Kawamukai M
    FEBS J; 2008 Jul; 275(14):3653-68. PubMed ID: 18540885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Candida albicans RNA triphosphatase and mutational analysis of its active site.
    Pei Y; Lehman K; Tian L; Shuman S
    Nucleic Acids Res; 2000 May; 28(9):1885-92. PubMed ID: 10756187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases.
    Shuman S; Liu Y; Schwer B
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12046-50. PubMed ID: 7991582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase.
    Ho CK; Lehman K; Shuman S
    Nucleic Acids Res; 1999 Dec; 27(24):4671-8. PubMed ID: 10572165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the triphosphatase active site of baculovirus mRNA capping enzyme LEF4 and evidence for a two-metal mechanism.
    Martins A; Shuman S
    Nucleic Acids Res; 2003 Mar; 31(5):1455-63. PubMed ID: 12595553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fission yeast RNA triphosphatase reads an Spt5 CTD code.
    Doamekpor SK; Schwer B; Sanchez AM; Shuman S; Lima CD
    RNA; 2015 Jan; 21(1):113-23. PubMed ID: 25414009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the active site of vaccinia virus RNA triphosphatase.
    Gong C; Shuman S
    Virology; 2003 Apr; 309(1):125-34. PubMed ID: 12726733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein.
    Safrany ST; Ingram SW; Cartwright JL; Falck JR; McLennan AG; Barnes LD; Shears SB
    J Biol Chem; 1999 Jul; 274(31):21735-40. PubMed ID: 10419486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of the Candida albicans gene for mRNA 5'-triphosphatase: association of mRNA 5'-triphosphatase and mRNA 5'-guanylyltransferase activities is essential for the function of mRNA 5'-capping enzyme in vivo.
    Yamada-Okabe T; Mio T; Matsui M; Kashima Y; Arisawa M; Yamada-Okabe H
    FEBS Lett; 1998 Sep; 435(1):49-54. PubMed ID: 9755857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain.
    Benarroch D; Smith P; Shuman S
    Structure; 2008 Apr; 16(4):501-12. PubMed ID: 18400173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe.
    Hausmann S; Ramirez A; Schneider S; Schwer B; Shuman S
    Nucleic Acids Res; 2007; 35(5):1411-20. PubMed ID: 17284461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization and in vitro mutagenesis of the active site in the Saccharomyces cerevisiae mRNA capping enzyme.
    Shibagaki Y; Gotoh H; Kato M; Mizumoto K
    J Biochem; 1995 Dec; 118(6):1303-9. PubMed ID: 8720151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fission yeast Dma1 requires RING domain dimerization for its ubiquitin ligase activity and mitotic checkpoint function.
    Johnson AE; Collier SE; Ohi MD; Gould KL
    J Biol Chem; 2012 Jul; 287(31):25741-8. PubMed ID: 22669973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.