These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12789513)
1. Sexual modification of female spinach seeds (Spinacia oleracea L.) by irradiation with ion particles. Komai F; Shikazono N; Tanaka A Plant Cell Rep; 2003 Apr; 21(8):713-7. PubMed ID: 12789513 [TBL] [Abstract][Full Text] [Related]
2. Microwave seed priming and ascorbic acid assisted phytoextraction of heavy metals from surgical industry effluents through spinach. Abubakar M; Alghanem SMS; Alhaithloul HAS; Alsudays IM; Farid M; Zubair M; Farid S; Rizwan M; Yong JWH; Abeed AHA Ecotoxicol Environ Saf; 2024 Sep; 282():116731. PubMed ID: 39029219 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Chen K; Arora R Plant Sci; 2011 Feb; 180(2):212-20. PubMed ID: 21421363 [TBL] [Abstract][Full Text] [Related]
4. Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Zheng L; Hong F; Lu S; Liu C Biol Trace Elem Res; 2005 Apr; 104(1):83-92. PubMed ID: 15851835 [TBL] [Abstract][Full Text] [Related]
5. Contamination of spinach at germination: A route to persistence and environmental reintroduction by Salmonella. Kumar GD; Patel J; Ravishankar S Int J Food Microbiol; 2020 Aug; 326():108646. PubMed ID: 32413802 [TBL] [Abstract][Full Text] [Related]
6. Seed germination and seedling allogamy in Rosmarinus officinalis: the costs of inbreeding. Garcia-Fayos P; Castellanos MC; Segarra-Moragues JG Plant Biol (Stuttg); 2018 May; 20(3):627-635. PubMed ID: 29283472 [TBL] [Abstract][Full Text] [Related]
7. Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence. Sklensky DE; Davies PJ J Exp Bot; 2011 Aug; 62(12):4323-36. PubMed ID: 21565983 [TBL] [Abstract][Full Text] [Related]
8. Changes in morphological traits, anatomical and molecular alterations caused by gamma-rays and zinc oxide nanoparticles in spinach (Spinacia oleracea L.) plant. Aly AA; Safwat G; Eliwa NE; Eltawil AHM; Abd El-Aziz MH Biometals; 2023 Oct; 36(5):1059-1079. PubMed ID: 37173538 [TBL] [Abstract][Full Text] [Related]
9. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Chen K; Fessehaie A; Arora R Plant Sci; 2012 Feb; 183():27-36. PubMed ID: 22195574 [TBL] [Abstract][Full Text] [Related]
10. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Ji SH; Choi KH; Pengkit A; Im JS; Kim JS; Kim YH; Park Y; Hong EJ; Jung SK; Choi EH; Park G Arch Biochem Biophys; 2016 Sep; 605():117-28. PubMed ID: 26944552 [TBL] [Abstract][Full Text] [Related]
11. Biological effects of protons targeted to different ranges in Arabidopsis seeds. Qin HL; Wang YG; Xue JM; Miao Q; Ma L; Mei T; Zhang WM; Guo W; Wang JY; Gu HY Int J Radiat Biol; 2007 May; 83(5):301-8. PubMed ID: 17457755 [TBL] [Abstract][Full Text] [Related]
12. Rapid sex identification method of spinach (Spinacia oleracea L.) in the vegetative stage using loop-mediated isothermal amplification. Fujita N; Ayukawa Y; Fuke M; Teraoka T; Watanabe K; Arie T; Komatsu K Planta; 2017 Jan; 245(1):221-226. PubMed ID: 27838842 [TBL] [Abstract][Full Text] [Related]
13. Effects of heavy ions on the germination and survival of Arabidopsis thaliana. Tanaka A; Shikazono N; Yokota Y; Watanabe H; Tano S Int J Radiat Biol; 1997 Jul; 72(1):121-7. PubMed ID: 9246201 [TBL] [Abstract][Full Text] [Related]
14. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. Liu S; Oshita S; Kawabata S; Makino Y; Yoshimoto T Langmuir; 2016 Nov; 32(43):11295-11302. PubMed ID: 27259095 [TBL] [Abstract][Full Text] [Related]
15. Biological effects of three types of ionizing radiation on creeping bentgrass. Kim SH; Kim YS; Lee HJ; Jo YD; Kim JB; Kang SY Int J Radiat Biol; 2019 Sep; 95(9):1295-1300. PubMed ID: 31107125 [No Abstract] [Full Text] [Related]
16. Biosynthesis and accumulation of 20-hydroxyecdysone in individual male and female spinach plants during the reproductive stage. Cao VD; Riu KZ; Boo KH Plant Physiol Biochem; 2018 Aug; 129():394-399. PubMed ID: 29945075 [TBL] [Abstract][Full Text] [Related]
17. [The disruption of aquaporin function in cell membranes as a cause of changes in germinability of pea seeds after exposure to low doses of gamma-radiation]. Veselovskiĭ VA; Veselova TV Radiats Biol Radioecol; 2007; 47(1):28-33. PubMed ID: 17387993 [TBL] [Abstract][Full Text] [Related]
18. Biological effects of carbon ions with medium energy on plant seeds. Wei Z; Liu Y; Wang G; Chen X; Li H; Yang H; Wang L; Gao Q; Wang C; Wang Y Radiat Res; 1995 Mar; 141(3):342-4. PubMed ID: 7871164 [TBL] [Abstract][Full Text] [Related]
19. [Effect of space environment on germination and vegetation growth in Carthamus tinctorius L]. Gao W; Zhao S; Xue L; Xiao P; Li X; Qi Z Zhongguo Zhong Yao Za Zhi; 1998 Dec; 23(12):712-3, 763. PubMed ID: 11542773 [TBL] [Abstract][Full Text] [Related]
20. Cytogenetic effects of low doses of energetic carbon ions on rice after exposures of dry seeds, wet seeds and seedlings. Shi JM; Guo JG; Li WJ; Zhang M; Huang L; Sun YQ J Radiat Res; 2010; 51(3):235-42. PubMed ID: 20505262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]