These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data. Li X; Jiang H Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968 [TBL] [Abstract][Full Text] [Related]
4. Gauss-Newton method for image reconstruction in diffuse optical tomography. Schweiger M; Arridge SR; Nissilä I Phys Med Biol; 2005 May; 50(10):2365-86. PubMed ID: 15876673 [TBL] [Abstract][Full Text] [Related]
6. In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations. Xu Y; Gu X; Fajardo LL; Jiang H Appl Opt; 2003 Jun; 42(16):3163-9. PubMed ID: 12790467 [TBL] [Abstract][Full Text] [Related]
7. Convergence analysis of the Newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography. Varma HM; Banerjee B; Roy D; Nandakumaran AK; Vasu RM J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):259-67. PubMed ID: 20126237 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional Bayesian optical image reconstruction with domain decomposition. Eppstein MJ; Dougherty DE; Hawrysz DJ; Sevick-Muraca EM IEEE Trans Med Imaging; 2001 Mar; 20(3):147-63. PubMed ID: 11341706 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved Fourier optical diffuse tomography. Xu M; Lax M; Alfano RR J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1535-42. PubMed ID: 11444546 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms. Grosenick D; Kummrow A; Macdonald R; Schlag PM; Rinneberg H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061908. PubMed ID: 18233870 [TBL] [Abstract][Full Text] [Related]
11. A pseudo-time EnKF incorporating shape based reconstruction for diffuse optical tomography. Raveendran T; Gupta S; Vasu RM; Roy D Med Phys; 2012 Feb; 39(2):1092-101. PubMed ID: 22320819 [TBL] [Abstract][Full Text] [Related]
12. 3D level set reconstruction of model and experimental data in Diffuse Optical Tomography. Schweiger M; Dorn O; Zacharopoulos A; Nissila I; Arridge SR Opt Express; 2010 Jan; 18(1):150-64. PubMed ID: 20173834 [TBL] [Abstract][Full Text] [Related]
16. Tomographic optical breast imaging guided by three-dimensional mammography. Li A; Miller EL; Kilmer ME; Brukilacchio TJ; Chaves T; Stott J; Zhang Q; Wu T; Chorlton M; Moore RH; Kopans DB; Boas DA Appl Opt; 2003 Sep; 42(25):5181-90. PubMed ID: 12962399 [TBL] [Abstract][Full Text] [Related]
17. Quantification of optical properties of a breast tumor using random walk theory. Chernomordik V; Hattery DW; Grosenick D; Wabnitz H; Rinneberg H; Moesta KT; Schlag PM; Gandjbakhche A J Biomed Opt; 2002 Jan; 7(1):80-7. PubMed ID: 11818015 [TBL] [Abstract][Full Text] [Related]
18. Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging. Bamett AH; Culver JP; Sorensen AG; Dale A; Boas DA Appl Opt; 2003 Jun; 42(16):3095-108. PubMed ID: 12790461 [TBL] [Abstract][Full Text] [Related]
19. Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography. Hielscher AH; Bartel S J Biomed Opt; 2001 Apr; 6(2):183-92. PubMed ID: 11375728 [TBL] [Abstract][Full Text] [Related]
20. Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography. Lee O; Ye JC Opt Express; 2013 Nov; 21(22):26589-604. PubMed ID: 24216880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]