BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 12790569)

  • 1. Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation.
    Fradera X; Márquez M; Smith BD; Orozco M; Luque FJ
    J Org Chem; 2003 Jun; 68(12):4663-73. PubMed ID: 12790569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative conformational study of redox-active [2]rotaxanes, part 1: Methodology and application to a model [2]rotaxane.
    Altobello S; Nikitin K; Stolarczyk JK; Lestini E; Fitzmaurice D
    Chemistry; 2008; 14(4):1107-16. PubMed ID: 18000924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.
    Leontiev AV; Jemmett CA; Beer PD
    Chemistry; 2011 Jan; 17(3):816-25. PubMed ID: 21226096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and investigation of host-[2]rotaxanes that bind metal cations.
    Wang X; Zhu J; Smithrud DB
    J Org Chem; 2010 May; 75(10):3358-70. PubMed ID: 20411910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axle charge effects on photoinduced electron transfer processes in rotaxanes containing porphyrin and [60]fullerene.
    Sasabe H; Sandanayaka AS; Kihara N; Furusho Y; Takata T; Araki Y; Ito O
    Phys Chem Chem Phys; 2009 Dec; 11(46):10908-15. PubMed ID: 19924325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation, dynamics, solvation and relative stabilities of selected beta-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field.
    Kräutler V; Müller M; Hünenberger PH
    Carbohydr Res; 2007 Oct; 342(14):2097-124. PubMed ID: 17573054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calix[4]arene-based rotaxane host systems for anion recognition.
    McConnell AJ; Serpell CJ; Thompson AL; Allan DR; Beer PD
    Chemistry; 2010 Jan; 16(4):1256-64. PubMed ID: 19950342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels.
    Georges N; Loeb SJ; Tiburcio J; Wisner JA
    Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically switchable hydrogen-bonded molecular shuttles.
    Altieri A; Gatti FG; Kay ER; Leigh DA; Martel D; Paolucci F; Slawin AM; Wong JK
    J Am Chem Soc; 2003 Jul; 125(28):8644-54. PubMed ID: 12848572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of a guaiacyl beta-O-4 lignin model compound: examination of intramolecular hydrogen bonding and conformational flexibility.
    Besombes S; Mazeau K
    Biopolymers; 2004 Feb; 73(3):301-15. PubMed ID: 14755566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal dynamics of mechanically constrained hydrogen bonds revealed by vibrational photon echoes.
    Bodis P; Yeremenko S; Berná J; Buma WJ; Leigh DA; Woutersen S
    J Chem Phys; 2011 Apr; 134(13):134504. PubMed ID: 21476761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotaxanes of a macrocyclic ferrocenophane with dialkylammonium axle components.
    Suzaki Y; Chihara E; Takagi A; Osakada K
    Dalton Trans; 2009 Nov; (44):9881-91. PubMed ID: 19885537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Templated conversion of a crown ether-containing macrobicycle into [2]rotaxanes.
    Mahoney JM; Shukla R; Marshall RA; Beatty AM; Zajicek J; Smith BD
    J Org Chem; 2002 Mar; 67(5):1436-40. PubMed ID: 11871870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation of transmembrane proteins by isotropic membrane mimetics: a molecular dynamics study.
    Mottamal M; Shen S; Guembe C; Krilov G
    J Phys Chem B; 2007 Sep; 111(38):11285-96. PubMed ID: 17784746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared study of intercomponent interactions in a switchable hydrogen-bonded rotaxane.
    Jagesar DC; Hartl F; Buma WJ; Brouwer AM
    Chemistry; 2008; 14(6):1935-46. PubMed ID: 18064626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of nucleic acid base pairs in organic solvents: molecular dynamics, molecular dynamics/quenching, and correlated ab initio study.
    Zendlová L; Hobza P; Kabelác M
    J Phys Chem B; 2007 Mar; 111(10):2591-609. PubMed ID: 17302446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox behavior of ferrocene-containing rotaxane: transposition of the rotaxane wheel by redox reaction of a ferrocene moiety tethered at the end of the axle.
    Kihara N; Hashimoto M; Takata T
    Org Lett; 2004 May; 6(11):1693-6. PubMed ID: 15151391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.