BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 12790643)

  • 1. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid.
    Chandran SS; Yi J; Draths KM; von Daeniken R; Weber W; Frost JW
    Biotechnol Prog; 2003; 19(3):808-14. PubMed ID: 12790643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered glucose transport and shikimate pathway product yields in E. coli.
    Yi J; Draths KM; Li K; Frost JW
    Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli.
    Li K; Mikola MR; Draths KM; Worden RM; Frost JW
    Biotechnol Bioeng; 1999 Jul; 64(1):61-73. PubMed ID: 10397840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase.
    Ran N; Frost JW
    J Am Chem Soc; 2007 May; 129(19):6130-9. PubMed ID: 17451239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N; Xiao J; Berry A; Bolivar F; Valle F
    Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli.
    Yi J; Li K; Draths KM; Frost JW
    Biotechnol Prog; 2002; 18(6):1141-8. PubMed ID: 12467444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli].
    Li YH; Liu Y; Wang SC; Tong ZY; Xu QS
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-tyrosine production by deregulated strains of Escherichia coli.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli to enhance phenylalanine production.
    Yakandawala N; Romeo T; Friesen AD; Madhyastha S
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):283-91. PubMed ID: 18080813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli.
    Schmitz M; Hirsch E; Bongaerts J; Takors R
    Biotechnol Prog; 2002; 18(5):935-41. PubMed ID: 12363343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose.
    Muñoz AJ; Hernández-Chávez G; de Anda R; Martínez A; Bolívar F; Gosset G
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1845-52. PubMed ID: 21512819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine-containing analogues of intermediates in the Shikimate pathway.
    Pilch PF; Somerville RL
    Biochemistry; 1976 Nov; 15(24):5315-20. PubMed ID: 11811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of 1-deoxy-1-imino-D-erythrose 4-phosphate: a defining metabolite in the aminoshikimate pathway.
    Guo J; Frost JW
    J Am Chem Soc; 2002 Jan; 124(4):528-9. PubMed ID: 11804477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.
    Li K; Frost JW
    Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of a shikimate pathway variant.
    Ran N; Draths KM; Frost JW
    J Am Chem Soc; 2004 Jun; 126(22):6856-7. PubMed ID: 15174841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroaromatic equilibration during biosynthesis of shikimic acid.
    Knop DR; Draths KM; Chandran SS; Barker JL; von Daeniken R; Weber W; Frost JW
    J Am Chem Soc; 2001 Oct; 123(42):10173-82. PubMed ID: 11603966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruiting alternative glucose utilization pathways for improving succinate production.
    Tang J; Zhu X; Lu J; Liu P; Xu H; Tan Z; Zhang X
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2513-20. PubMed ID: 22895848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli.
    Tatarko M; Romeo T
    Curr Microbiol; 2001 Jul; 43(1):26-32. PubMed ID: 11375660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.