These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1279086)

  • 21. Solvent proton magnetic resonance dispersion in protocatechuate 3,4-dioxygenase and complexes with 3-halo-4-hydroxybenzoate inhibitors.
    Felton RH; Gordon SL; Sowell AL; May SW
    Biochemistry; 1984 Aug; 23(17):3955-9. PubMed ID: 6435670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
    Koenig SH; Hallenga K; Shporer M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2667-71. PubMed ID: 1058481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate.
    Withers SG; Madsen NB; Sykes BD
    Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High frequency dynamics in hemoglobin measured by magnetic relaxation dispersion.
    Victor K; Van-Quynh A; Bryant RG
    Biophys J; 2005 Jan; 88(1):443-54. PubMed ID: 15475581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the frequency of heme cavity fluctuations in metmyoglobin and methaemoglobin based on the study of exchange rate of solvent water with paramagnetic Fe3+ ion of heme. 1H-NMR studies.
    Käiväräinen AI; Goryunov AS; Sukhanova G
    Folia Biol (Praha); 1984; 30(6):396-403. PubMed ID: 6519310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR relaxometric investigation on human methemoglobin and fluoromethemoglobin. An improved quantitative in vitro assay of human methemoglobin.
    Aime S; Fasano M; Paoletti S; Arnelli A; Ascenzi P
    Magn Reson Med; 1995 Jun; 33(6):827-31. PubMed ID: 7651120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton nuclear magnetic resonance study of the solution distal histidine orientation in monomeric Chironomus thummi thummi cyanomet hemoglobins. Dynamic stability of the heme pocket as monitored by labile proton exchange.
    Peyton DH; La Mar GN; Ramaprasad S; Unger SW; Sankar S; Gersonde K
    J Mol Biol; 1991 Oct; 221(3):1015-26. PubMed ID: 1658331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton longitudinal relaxation investigation of histidyl residues in human normal adult hemoglobin.
    Russu IM; Ho C
    Biophys J; 1982 Aug; 39(2):203-10. PubMed ID: 6288133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relaxation induced by ferritin and ferritin-like magnetic particles: the role of proton exchange.
    Gossuin Y; Roch A; Muller RN; Gillis P
    Magn Reson Med; 2000 Feb; 43(2):237-43. PubMed ID: 10680687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR relaxation of protein and water protons in methemoglobin solutions.
    Eisenstadt M
    Biophys J; 1981 Mar; 33(3):469-74. PubMed ID: 7225516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nature of lysozyme-water interactions by proton NMR.
    Prosser S; Peemoeller H
    Biochem Cell Biol; 1991; 69(5-6):341-5. PubMed ID: 1654941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear magnetic spin-lattice relaxation of water protons caused by metal cage compounds.
    Szczepaniak LS; Sargeson A; Creasei II; Geue RJ; Tweedle M; Bryant RG
    Bioconjug Chem; 1992; 3(1):27-31. PubMed ID: 1319746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems.
    Asami S; Reif B
    Acc Chem Res; 2013 Sep; 46(9):2089-97. PubMed ID: 23745638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear magnetic resonance relaxation of glycogen H1 in solution.
    Chen W; Zhu XH; Avison MJ; Shulman RG
    Biochemistry; 1993 Sep; 32(36):9417-22. PubMed ID: 8369311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurements of water proton NMR spin-lattice relaxation time in the rotating frame (T1p) for studying motions in solutions of giant macro-molecules and supramolecular particles (T2 virus).
    James TL
    Physiol Chem Phys; 1977; 9(2):161-6. PubMed ID: 601108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton nuclear magnetic resonance investigation of the conformation and dynamics in the synthetic deoxyribonucleic acid decamers d(ATATCGATAT) and d(ATATGCATAT).
    Feigon J; Denny WA; Leupin W; Kearns DR
    Biochemistry; 1983 Dec; 22(25):5930-42. PubMed ID: 6661417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic field dependence of spin-lattice relaxation enhancement using piperidinyl nitroxyl spin-labels.
    Lovin JD; Wesbey GE; Engelstad BL; Sosnovsky G; Moseley M; Tuck DL; Brasch RC
    Magn Reson Imaging; 1985; 3(1):73-81. PubMed ID: 3999939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dispersion of water proton spin-lattice relaxation rates in aqueous human protein HC (alpha1-microglobulin) solutions.
    Dobies M; Kozak M; Jurga S; Grubb A
    Protein Pept Lett; 2009; 16(12):1496-503. PubMed ID: 20001913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nuclear magnetic resonance study of the heme environment in beef liver catalase.
    Lanir A; Schejter A
    Biochemistry; 1976 Jun; 15(12):2590-6. PubMed ID: 945745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.