These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 12791247)

  • 21. SIR proteins create compact heterochromatin fibers.
    Swygert SG; Senapati S; Bolukbasi MF; Wolfe SA; Lindsay S; Peterson CL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12447-12452. PubMed ID: 30455303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing.
    Cockell M; Palladino F; Laroche T; Kyrion G; Liu C; Lustig AJ; Gasser SM
    J Cell Biol; 1995 May; 129(4):909-24. PubMed ID: 7744964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retrotransposon target site selection by imitation of a cellular protein.
    Brady TL; Fuerst PG; Dick RA; Schmidt C; Voytas DF
    Mol Cell Biol; 2008 Feb; 28(4):1230-9. PubMed ID: 18086891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae.
    Moazed D; Johnson D
    Cell; 1996 Aug; 86(4):667-77. PubMed ID: 8752220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational analysis of the Sir3 BAH domain reveals multiple points of interaction with nucleosomes.
    Sampath V; Yuan P; Wang IX; Prugar E; van Leeuwen F; Sternglanz R
    Mol Cell Biol; 2009 May; 29(10):2532-45. PubMed ID: 19273586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres.
    Palladino F; Laroche T; Gilson E; Axelrod A; Pillus L; Gasser SM
    Cell; 1993 Nov; 75(3):543-55. PubMed ID: 8221893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization.
    Hanner AS; Rusche LN
    Genetics; 2017 Oct; 207(2):517-528. PubMed ID: 28827288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.
    Tanny JC; Kirkpatrick DS; Gerber SA; Gygi SP; Moazed D
    Mol Cell Biol; 2004 Aug; 24(16):6931-46. PubMed ID: 15282295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nα-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain.
    Yang D; Fang Q; Wang M; Ren R; Wang H; He M; Sun Y; Yang N; Xu RM
    Nat Struct Mol Biol; 2013 Sep; 20(9):1116-8. PubMed ID: 23934152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction.
    Guintini L; Tremblay M; Toussaint M; D'Amours A; Wellinger RE; Wellinger RJ; Conconi A
    Nucleic Acids Res; 2017 May; 45(8):4577-4589. PubMed ID: 28334768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sir4 Deficiency Reverses Cell Senescence by Sub-Telomere Recombination.
    Liu J; Hong X; Wang L; Liang CY; Liu JP
    Cells; 2021 Apr; 10(4):. PubMed ID: 33915984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle.
    Arnaudo N; Fernández IS; McLaughlin SH; Peak-Chew SY; Rhodes D; Martino F
    Nat Struct Mol Biol; 2013 Sep; 20(9):1119-21. PubMed ID: 23934150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast.
    Hecht A; Laroche T; Strahl-Bolsinger S; Gasser SM; Grunstein M
    Cell; 1995 Feb; 80(4):583-92. PubMed ID: 7867066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.
    Hannan A; Abraham NM; Goyal S; Jamir I; Priyakumar UD; Mishra K
    Nucleic Acids Res; 2015 Dec; 43(21):10213-26. PubMed ID: 26319015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular model for telomeric heterochromatin in yeast.
    Grunstein M
    Curr Opin Cell Biol; 1997 Jun; 9(3):383-7. PubMed ID: 9159071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes.
    Behrouzi R; Lu C; Currie MA; Jih G; Iglesias N; Moazed D
    Elife; 2016 Nov; 5():. PubMed ID: 27835568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Sir2 family of protein deacetylases.
    Blander G; Guarente L
    Annu Rev Biochem; 2004; 73():417-35. PubMed ID: 15189148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin.
    Hecht A; Strahl-Bolsinger S; Grunstein M
    Nature; 1996 Sep; 383(6595):92-6. PubMed ID: 8779721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.