BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12791588)

  • 1. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation.
    Just A; Arendshorst WJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R619-31. PubMed ID: 12791588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
    Just A; Arendshorst WJ
    J Physiol; 2005 Dec; 569(Pt 3):959-74. PubMed ID: 16223765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
    Just A; Ehmke H; Toktomambetova L; Kirchheim HR
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1062-71. PubMed ID: 11352846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog.
    Just A; Ehmke H; Wittmann U; Kirchheim HR
    J Physiol; 2002 Jan; 538(Pt 1):167-77. PubMed ID: 11773325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal interstitial atp responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity.
    Nishiyama A; Majid DS; Walker M; Miyatake A; Navar LG
    Hypertension; 2001 Feb; 37(2 Pt 2):753-9. PubMed ID: 11230369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.
    Grifoni SC; Chiposi R; McKey SE; Ryan MJ; Drummond HA
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F285-92. PubMed ID: 19889952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
    Just A; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1489-500. PubMed ID: 17728380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade.
    Nishiyama A; Jackson KE; Majid DS; Rahman M; Navar LG
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H772-7. PubMed ID: 16214849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance.
    Nishiyama A; Majid DS; Taher KA; Miyatake A; Navar LG
    Circ Res; 2000 Mar; 86(6):656-62. PubMed ID: 10747001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
    Araujo M; Welch WJ; Zhou X; Sullivan K; Walsh S; Pasternak A; Wilcox CS
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1120-F1127. PubMed ID: 28228405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.
    Pires SL; Julien C; Chapuis B; Sassard J; Barrès C
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F51-8. PubMed ID: 11739112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal blood flow and dynamic autoregulation in conscious mice.
    Iliescu R; Cazan R; McLemore GR; Venegas-Pont M; Ryan MJ
    Am J Physiol Renal Physiol; 2008 Sep; 295(3):F734-40. PubMed ID: 18579706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of renal blood flow autoregulation: dynamics and contributions.
    Just A
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R1-17. PubMed ID: 16990493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation.
    Walker M; Harrison-Bernard LM; Cook AK; Navar LG
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F858-65. PubMed ID: 11053046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascending myogenic autoregulation: interactions between tubuloglomerular feedback and myogenic mechanisms.
    Moore LC; Rich A; Casellas D
    Bull Math Biol; 1994 May; 56(3):391-410. PubMed ID: 8087076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total and local renal blood flow and filtration in the rat during reduced renal arterial blood pressure.
    Hope A; Clausen G; Rosivall L
    Acta Physiol Scand; 1981 Dec; 113(4):455-63. PubMed ID: 7348030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation.
    Feldberg R; Colding-Jørgensen M; Holstein-Rathlou NH
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F581-93. PubMed ID: 7485545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.