These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

732 related articles for article (PubMed ID: 1279177)

  • 21. Formation of non-beta 6.3-helical gramicidin channels between sequence-substituted gramicidin analogues.
    Durkin JT; Providence LL; Koeppe RE; Andersen OS
    Biophys J; 1992 Apr; 62(1):145-57; discussion 157-9. PubMed ID: 1376164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A.
    Seoh SA; Busath DD
    Biophys J; 1993 Nov; 65(5):1817-27. PubMed ID: 7507714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulations of ion channels--watching ions and water move.
    Sansom MS; Shrivastava IH; Ranatunga KM; Smith GR
    Trends Biochem Sci; 2000 Aug; 25(8):368-74. PubMed ID: 10916155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Gramicidin channels: a new mechanism for transmembrane transfer of ions (from high resolution x-ray structural studies of the antibiotic)].
    Tishchenko GN; Andrianov VI; Vaĭnshteĭn BK; Dodson E
    Bioorg Khim; 1992 Mar; 18(3):357-73. PubMed ID: 1381919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Side-chain structure and dynamics at the lipid-protein interface: Val1 of the gramicidin A channel.
    Lee KC; Cross TA
    Biophys J; 1994 May; 66(5):1380-7. PubMed ID: 7520290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.
    Kessel A; Cafiso DS; Ben-Tal N
    Biophys J; 2000 Feb; 78(2):571-83. PubMed ID: 10653772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic interactions in gramicidin channels. Three-dielectric model.
    Martínez G; Sancho M
    Eur Biophys J; 1993; 22(4):301-7. PubMed ID: 7504621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Models and simulations of ion channels and related membrane proteins.
    Sansom MS
    Curr Opin Struct Biol; 1998 Apr; 8(2):237-44. PubMed ID: 9631299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gramicidin channels--a solvable membrane "protein" folding problem.
    Andersen OS; Saberwal G; Greathouse DV; Koeppe RE
    Indian J Biochem Biophys; 1996 Oct; 33(5):331-42. PubMed ID: 9029812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles.
    Sham SS; Shobana S; Townsley LE; Jordan JB; Fernandez JQ; Andersen OS; Greathouse DV; Hinton JF
    Biochemistry; 2003 Feb; 42(6):1401-9. PubMed ID: 12578352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implicit solvent model estimates of the stability of model structures of the alamethicin channel.
    Kessel A; Tieleman DP; Ben-Tal N
    Eur Biophys J; 2004 Feb; 33(1):16-28. PubMed ID: 13680212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of a porin-like peptide channel into a gramicidin-like channel by glycine to D-alanine substitutions.
    Thundimadathil J; Roeske RW; Guo L
    Biophys J; 2006 Feb; 90(3):947-55. PubMed ID: 16272445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer.
    Woolf TB; Roux B
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11631-5. PubMed ID: 7526400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular flexibility demonstrated by paramagnetic enhancements of nuclear relaxation. Application to alamethicin: a voltage-gated peptide channel.
    North CL; Franklin JC; Bryant RG; Cafiso DS
    Biophys J; 1994 Nov; 67(5):1861-6. PubMed ID: 7532020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 1999 Apr; 76(4):1757-69. PubMed ID: 10096876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue.
    Oiki S; Koeppe RE; Andersen OS
    Biophys J; 1994 Jun; 66(6):1823-32. PubMed ID: 7521224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the molecular dynamics of alamethicin using 13C NMR: implications for the mechanism of gating of a voltage-dependent channel.
    Kelsh LP; Ellena JF; Cafiso DS
    Biochemistry; 1992 Jun; 31(22):5136-44. PubMed ID: 1606136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.