These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12791986)

  • 21. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.
    Seyring M; Song X; Rettenmayr M
    ACS Nano; 2011 Apr; 5(4):2580-6. PubMed ID: 21375327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structure and mechanical properties of amorphous and nanocrystalline Fe-Si-B alloys.
    Sypień A; Kusiński J
    J Microsc; 2006 Oct; 224(Pt 1):111-3. PubMed ID: 17100920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First combined electron backscatter diffraction and transmission electron microscopy study of grain boundary structure of deformed quartzite.
    Shigematsu N; Prior DJ; Wheeler J
    J Microsc; 2006 Dec; 224(Pt 3):306-21. PubMed ID: 17210063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of Impact Load on the Atomistic Scale Fracture Behavior of Nanocrystalline bcc Iron.
    Zhao Z; Wang Z; Bie Y; Liu X; Wei Y
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ductile crystalline-amorphous nanolaminates.
    Wang Y; Li J; Hamza AV; Barbee TW
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11155-60. PubMed ID: 17592136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis.
    Spanaki-Voreadi AP; Kerezoudis NP; Zinelis S
    Int Endod J; 2006 Mar; 39(3):171-8. PubMed ID: 16507069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.
    An Q; Goddard WA
    Phys Rev Lett; 2015 Sep; 115(10):105501. PubMed ID: 26382683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Softening due to disordered grain boundaries in nanocrystalline Co.
    Yuasa M; Hakamada M; Nakano H; Mabuchi M; Chino Y
    J Phys Condens Matter; 2013 Aug; 25(34):345702. PubMed ID: 23896760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformation twinning in nanocrystalline aluminum.
    Chen M; Ma E; Hemker KJ; Sheng H; Wang Y; Cheng X
    Science; 2003 May; 300(5623):1275-7. PubMed ID: 12714676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Significance of Coherent Transformation on Grain Refinement and Consequent Enhancement in Toughness.
    Li X; Zhao J; Dong L; Misra RDK; Wang X; Wang X; Shang C
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved ductility of Cu64Zr36 metallic glass/Cu nanocomposites via phase and grain boundaries.
    Jian WR; Wang L; Li B; Yao XH; Luo SN
    Nanotechnology; 2016 Apr; 27(17):175701. PubMed ID: 26965457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flaw tolerant bulk and surface nanostructures of biological systems.
    Gao H; Ji B; Buehler MJ; Yao H
    Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computing the mobility of grain boundaries.
    Janssens KG; Olmsted D; Holm EA; Foiles SM; Plimpton SJ; Derlet PM
    Nat Mater; 2006 Feb; 5(2):124-7. PubMed ID: 16400330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations.
    Dingreville R; Aksoy D; Spearot DE
    Sci Rep; 2017 Aug; 7(1):8332. PubMed ID: 28827660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.