These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 12792131)
1. Normal values of short-wavelength automated perimetry. Mojon DS; Zulauf M Ophthalmologica; 2003; 217(4):260-4. PubMed ID: 12792131 [TBL] [Abstract][Full Text] [Related]
2. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Liu S; Lam S; Weinreb RN; Ye C; Cheung CY; Lai G; Lam DS; Leung CK Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7325-31. PubMed ID: 21810975 [TBL] [Abstract][Full Text] [Related]
3. Test-retest variability of blue-on-yellow perimetry is greater than white-on-white perimetry in normal subjects. Kwon YH; Park HJ; Jap A; Ugurlu S; Caprioli J Am J Ophthalmol; 1998 Jul; 126(1):29-36. PubMed ID: 9683146 [TBL] [Abstract][Full Text] [Related]
4. Short-wavelength automated perimetry in neuro-ophthalmologic disorders. Keltner JL; Johnson CA Arch Ophthalmol; 1995 Apr; 113(4):475-81. PubMed ID: 7710398 [TBL] [Abstract][Full Text] [Related]
5. Topography of the frequency doubling perimetry visual field compared with that of short wavelength and achromatic automated perimetry visual fields. Landers J; Sharma A; Goldberg I; Graham S Br J Ophthalmol; 2006 Jan; 90(1):70-4. PubMed ID: 16361671 [TBL] [Abstract][Full Text] [Related]
6. Normal values for Octopus tendency oriented perimetry in children 7 through 13 years old. Brown SM; Bradley JC; Monhart MJ; Baker DK Graefes Arch Clin Exp Ophthalmol; 2005 Sep; 243(9):886-93. PubMed ID: 15834603 [TBL] [Abstract][Full Text] [Related]
7. Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Landers JA; Goldberg I; Graham SL Arch Ophthalmol; 2003 Dec; 121(12):1705-10. PubMed ID: 14662589 [TBL] [Abstract][Full Text] [Related]
8. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Bengtsson B; Heijl A Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399 [TBL] [Abstract][Full Text] [Related]
10. [A comparative analysis of standard automated perimetry and short wavelength automated perimetry in early diagnosis of glaucoma]. Chiseliţă D; Crenguţa MI; Danielescu C; Mihaela NM Oftalmologia; 2006; 50(2):94-102. PubMed ID: 16927766 [TBL] [Abstract][Full Text] [Related]
11. Influence of blue light spectrum filter on short-wavelength and standard automated perimetries. Castro LC; de Souza CE; Soriano ES; Melo LA; Paranhos A Arq Bras Oftalmol; 2006; 69(5):725-9. PubMed ID: 17187143 [TBL] [Abstract][Full Text] [Related]
12. Short wavelength automated perimetry (SWAP) in ophthalmic practice. Demirel S; Johnson CA J Am Optom Assoc; 1996 Aug; 67(8):451-6. PubMed ID: 8888875 [TBL] [Abstract][Full Text] [Related]
13. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. Horn FK; Brenning A; Jünemann AG; Lausen B J Glaucoma; 2007; 16(4):363-71. PubMed ID: 17570999 [TBL] [Abstract][Full Text] [Related]
14. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? Ferreras A; Polo V; Larrosa JM; Pablo LE; Pajarin AB; Pueyo V; Honrubia FM J Glaucoma; 2007; 16(4):372-83. PubMed ID: 17571000 [TBL] [Abstract][Full Text] [Related]
15. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Bengtsson B; Heijl A Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):5029-34. PubMed ID: 14578431 [TBL] [Abstract][Full Text] [Related]
16. Test-retest variability for standard automated perimetry and short-wavelength automated perimetry in diabetic patients. Bengtsson B; Hellgren KJ; Agardh E Acta Ophthalmol; 2008 Mar; 86(2):170-6. PubMed ID: 17935606 [TBL] [Abstract][Full Text] [Related]
17. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry. Springer C; Bültmann S; Völcker HE; Rohrschneider K Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065 [TBL] [Abstract][Full Text] [Related]
18. Statistical modelling of the central 10-degree visual field in short-wavelength automated perimetry. Cubbidge RP; Hosking SL; Embleton S Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):650-7. PubMed ID: 12192459 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a learning effect in short-wavelength automated perimetry. Wild JM; Kim LS; Pacey IE; Cunliffe IA Ophthalmology; 2006 Feb; 113(2):206-15. PubMed ID: 16458091 [TBL] [Abstract][Full Text] [Related]
20. Contrasting blue-on-yellow with white-on-white visual fields: Roles of visual adaptation for healthy peri- or postmenopausal women younger than 70 years of age. Eisner A; Toomey MD; Incognito LJ; O'malley JP; Samples JR Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5605-14. PubMed ID: 17122155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]