These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis. Jenks BG; van Zoest ID; de Koning HP; Leenders HJ; Roubos EW Life Sci; 1991; 48(17):1633-7. PubMed ID: 1850060 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of alpha-MSH secretion is associated with increased cyclic-AMP egress from the neurointermediate lobe of Xenopus laevis. Leenders HJ; Jenks BG; Roubos EW Life Sci; 1995 Nov; 57(26):2447-53. PubMed ID: 8847966 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis. Leenders HJ; de Koning HP; Ponten SP; Jenks BG; Roubos EW Life Sci; 1993; 52(24):1969-75. PubMed ID: 8389412 [TBL] [Abstract][Full Text] [Related]
5. Neuropeptide Y inhibits spontaneous alpha-melanocyte-stimulating hormone (alpha-MSH) release via a Y(5) receptor and suppresses thyrotropin-releasing hormone-induced alpha-MSH secretion via a Y(1) receptor in frog melanotrope cells. Galas L; Tonon MC; Beaujean D; Fredriksson R; Larhammar D; Lihrmann I; Jegou S; Fournier A; Chartrel N; Vaudry H Endocrinology; 2002 May; 143(5):1686-94. PubMed ID: 11956150 [TBL] [Abstract][Full Text] [Related]
6. Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis. Scheenen WJ; Jenks BG; Willems PH; Roubos EW Pflugers Arch; 1994 Jun; 427(3-4):244-51. PubMed ID: 8072842 [TBL] [Abstract][Full Text] [Related]
7. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides. Verburg-Van Kemenade BM; Jenks BG; Cruijsen PM; Dings A; Tonon MC; Vaudry H Peptides; 1987; 8(6):1093-100. PubMed ID: 2831518 [TBL] [Abstract][Full Text] [Related]
8. Calcium oscillations in melanotrope cells of Xenopus laevis are differentially regulated by cAMP-dependent and cAMP-independent mechanisms. Lieste JR; Scheenen WJ; Willems PH; Jenks BG; Roubos EW Cell Calcium; 1996 Oct; 20(4):329-37. PubMed ID: 8939352 [TBL] [Abstract][Full Text] [Related]
9. Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors. Verburg-van Kemenade BM; Jenks BG; Houben AJ Life Sci; 1987 May; 40(19):1859-67. PubMed ID: 3033416 [TBL] [Abstract][Full Text] [Related]
10. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis. De Koning HP; Jenks BG; Roubos EW Endocrinology; 1993 Feb; 132(2):674-81. PubMed ID: 8381070 [TBL] [Abstract][Full Text] [Related]
11. Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor. Scheenen WJ; Yntema HG; Willems PH; Roubos EW; Lieste JR; Jenks BG Peptides; 1995; 16(5):889-95. PubMed ID: 7479331 [TBL] [Abstract][Full Text] [Related]
12. Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary. Dotman CH; Maia A; Jenks BG; Roubos EW Neuroendocrinology; 1997 Aug; 66(2):106-13. PubMed ID: 9263207 [TBL] [Abstract][Full Text] [Related]
13. New aspects of signal transduction in the Xenopus laevis melanotrope cell. Roubos EW; Scheenen WJ; Cruijsen PM; Cornelisse LN; Leenders HJ; Jenks BG Gen Comp Endocrinol; 2002 May; 126(3):255-60. PubMed ID: 12093112 [TBL] [Abstract][Full Text] [Related]
14. Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis. Buzzi M; Bemelmans FF; Roubos EW; Jenks BG Endocrinology; 1997 Jan; 138(1):203-12. PubMed ID: 8977405 [TBL] [Abstract][Full Text] [Related]
15. Adrenocorticotropin/alpha-melanocyte-stimulating hormone (ACTH/MSH)-like peptides modulate adenylate cyclase activity in rat brain slices: evidence for an ACTH/MSH receptor-coupled mechanism. Florijn WJ; Mulder AH; Versteeg DH; Gispen WH J Neurochem; 1993 Jun; 60(6):2204-11. PubMed ID: 8388034 [TBL] [Abstract][Full Text] [Related]
16. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis. de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808 [TBL] [Abstract][Full Text] [Related]
17. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis. de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944 [TBL] [Abstract][Full Text] [Related]
18. Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis. Calle M; Corstens GJ; Wang L; Kozicz T; Denver RJ; Barendregt HP; Roubos EW Brain Res; 2005 Apr; 1040(1-2):14-28. PubMed ID: 15804422 [TBL] [Abstract][Full Text] [Related]
19. The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels. Scheenen WJ; de Koning HP; Jenks BG; Vaudry H; Roubos EW J Neuroendocrinol; 1994 Aug; 6(4):457-64. PubMed ID: 7987377 [TBL] [Abstract][Full Text] [Related]
20. Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Xiao D; Chu MM; Lee EK; Lin HR; Wong AO Neuroendocrinology; 2002 Nov; 76(5):325-38. PubMed ID: 12457043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]