BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12793459)

  • 1. Chemical and enzymatic hydrolysis of anthraquinone glycosides from madder roots.
    Derksen GC; Naayer M; van Beek TA; Capelle A; Haaksman IK; van Doren HA; de Groot A
    Phytochem Anal; 2003; 14(3):137-44. PubMed ID: 12793459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars.
    Derksen GC; Lelyveld GP; van Beek TA; Capelle A; de Groot AE
    Phytochem Anal; 2004; 15(6):397-406. PubMed ID: 15599964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).
    Ford L; Henderson RL; Rayner CM; Blackburn RS
    J Chromatogr A; 2017 Mar; 1487():36-46. PubMed ID: 28131591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography.
    Boldizsár I; Szucs Z; Füzfai Z; Molnár-Perl I
    J Chromatogr A; 2006 Nov; 1133(1-2):259-74. PubMed ID: 16962601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation.
    Henderson RL; Rayner CM; Blackburn RS
    Phytochemistry; 2013 Nov; 95():105-8. PubMed ID: 23891215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quirks of dye nomenclature. 14. Madder: queen of red dyes.
    Cooksey CJ
    Biotech Histochem; 2020 Aug; 95(6):474-482. PubMed ID: 32022588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection.
    Cuoco G; Mathe C; Archier P; Chemat F; Vieillescazes C
    Ultrason Sonochem; 2009 Jan; 16(1):75-82. PubMed ID: 18617432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation.
    Ford L; Rayner CM; Blackburn RS
    Phytochemistry; 2015 Sep; 117():168-173. PubMed ID: 26091962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging.
    Ishii Y; Nakamura K; Mitsumoto T; Takimoto N; Namiki M; Takasu S; Ogawa K
    Food Chem Toxicol; 2022 Mar; 161():112851. PubMed ID: 35139434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Anthraquinones from the roots of Knoxia valerianoides].
    Zhao F; Wang S; Wu X; Yu Y; Yue Z; Liu B; Lin S; Zhu C; Yang Y; Shi J
    Zhongguo Zhong Yao Za Zhi; 2011 Nov; 36(21):2980-6. PubMed ID: 22308688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New anthraquinone glycosides from the roots of Morinda citrifolia.
    Kamiya K; Hamabe W; Tokuyama S; Satake T
    Fitoterapia; 2009 Apr; 80(3):196-9. PubMed ID: 19233251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthraquinones from natural and transformed roots of Plocama pendula.
    Fraga BM; Quintana N; Díaz CE
    Chem Biodivers; 2009 Feb; 6(2):182-92. PubMed ID: 19235160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthraquinones from the roots of Prismatomeris malayana.
    Tuntiwachwuttikul P; Butsuri Y; Sukkoet P; Prawat U; Taylor WC
    Nat Prod Res; 2008; 22(11):962-8. PubMed ID: 18629711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae).
    Osman CP; Ismail NH; Ahmad R; Ahmat N; Awang K; Jaafar FM
    Molecules; 2010 Oct; 15(10):7218-26. PubMed ID: 20966871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthraquinones from the roots of Prismatomeris tetrandra.
    Zhang CL; Guan H; Xi PZ; Deng T; Gao JM
    Nat Prod Commun; 2010 Aug; 5(8):1251-2. PubMed ID: 20839629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A new anthraquinone from the root of Lasianthus acuminatissimus].
    Li B; Lai XW; Xu XH; Yu BW; Zhu Y
    Yao Xue Xue Bao; 2007 May; 42(5):502-4. PubMed ID: 17703772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F.
    Morimoto M; Tanimoto K; Sakatani A; Komai K
    Phytochemistry; 2002 May; 60(2):163-6. PubMed ID: 12009319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Examination of the anthraquinone composition in root-stock and root samples of Rubia tinctorium L. plants of different origins].
    Boldizsár I; László-Bencsik A; Szucs Z; Dános B
    Acta Pharm Hung; 2004; 74(3):142-8. PubMed ID: 16318223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is).
    Khanh PN; Huong TT; Spiga O; Trezza A; Son NT; Cuong TD; Ha VT; Cuong NM
    Rev Int Androl; 2018; 16(4):147-158. PubMed ID: 30286869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of microwave-assisted extraction for alizarin and purpurin in Rubiaceae plants and its comparison with conventional extraction methods.
    Dabiri M; Salimi S; Ghassempour A; Rassouli A; Talebi M
    J Sep Sci; 2005 Mar; 28(4):387-96. PubMed ID: 15792254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.