These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12793661)

  • 1. Hydraulics of sub-superficial flow constructed wetlands in semi arid climate conditions.
    Ranieri E
    Water Sci Technol; 2003; 47(7-8):49-55. PubMed ID: 12793661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study.
    Kaseva ME
    Water Res; 2004 Feb; 38(3):681-7. PubMed ID: 14723937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.
    Headley TR; Davison L; Huett DO; Müller R
    Water Res; 2012 Feb; 46(2):345-54. PubMed ID: 22127043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial dynamics in the sub-surface constructed wetland.
    Vymazal J; Balcarová J; Dousová H
    Water Sci Technol; 2001; 44(11-12):207-9. PubMed ID: 11804096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.
    Milani M; Toscano A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):568-80. PubMed ID: 23383642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hydrogen sulphide BOD from brackish water using vertical flow wetlands in a Caribbean environment.
    Giraldo E; Zárate E
    Water Sci Technol; 2001; 44(11-12):361-7. PubMed ID: 11804119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. River water quality improvement by natural and constructed wetland systems in the tropical semi-arid region of northeastern Brazil.
    de Ceballos BS; Oliveira H; Meira CM; Konig A; Guimarães AO; de Souza JT
    Water Sci Technol; 2001; 44(11-12):599-605. PubMed ID: 11804156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary investigation of the potential of four tropical emergent macrophytes for treatment of pre-treated pulp and papermill wastewater in Kenya.
    Abira MA; Ngirigacha HW; van Bruggen JJ
    Water Sci Technol; 2003; 48(5):223-31. PubMed ID: 14621168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of agricultural wastewater in two experimental combined constructed wetland systems in a tropical climate.
    Kantawanichkul S; Somprasert S; Aekasin U; Shutes RB
    Water Sci Technol; 2003; 48(5):199-205. PubMed ID: 14621165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed wetland system.
    Arias CA; Cabello A; Brix H; Johansen NH
    Water Sci Technol; 2003; 48(5):35-41. PubMed ID: 14621145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of plant tillering and root volume on flow pattern and water purification of vertical down flow wetlands for domestic wastewater treatment.
    Wang S; Xu Z; Li H
    Water Sci Technol; 2009; 59(1):81-7. PubMed ID: 19151489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of subsurface flow constructed wetlands--results and further research needs.
    Langergraber G
    Water Sci Technol; 2003; 48(5):157-66. PubMed ID: 14621160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO; Morris SG; Smith G; Hunt N
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a vertical flow filter bed on a hybrid constructed wetland system.
    Noorvee A; Põldvere E; Mander U
    Water Sci Technol; 2005; 51(9):137-44. PubMed ID: 16042252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.
    Maltais-Landry G; Maranger R; Brisson J; Chazarenc F
    Water Res; 2009 Feb; 43(2):535-45. PubMed ID: 19036399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands.
    Ranieri E; Young TM
    J Contam Hydrol; 2012 Mar; 129-130():38-45. PubMed ID: 22304895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt tracer experiments in constructed wetland ponds with emergent vegetation: laboratory study on the formation of density layers and its influence on breakthrough curve analysis.
    Schmid BH; Hengl MA; Stephan U
    Water Res; 2004 Apr; 38(8):2095-102. PubMed ID: 15087190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of iron oxidation states in a constructed wetland as an indicator of its redox properties.
    Diáková K; Holcová V; Síma J; Dusek J
    Chem Biodivers; 2006 Dec; 3(12):1288-300. PubMed ID: 17193243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.