BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12794067)

  • 1. Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma.
    Haldrup A; Lunde C; Scheller HV
    J Biol Chem; 2003 Aug; 278(35):33276-83. PubMed ID: 12794067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition.
    Li XP; Muller-Moule P; Gilmore AM; Niyogi KK
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15222-7. PubMed ID: 12417767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis.
    Brooks MD; Sylak-Glassman EJ; Fleming GR; Niyogi KK
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):E2733-40. PubMed ID: 23818601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of thioredoxin-like protein ACHT2 leads to negative feedback control of photosynthesis in Arabidopsis thaliana.
    Fukushi Y; Yokochi Y; Hisabori T; Yoshida K
    J Plant Res; 2024 May; 137(3):445-453. PubMed ID: 38367196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves.
    Zhang LT; Zhang ZS; Gao HY; Meng XL; Yang C; Liu JG; Meng QW
    BMC Plant Biol; 2012 Mar; 12():40. PubMed ID: 22429403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light.
    Niu Y; Matsubara S; Nedbal L; Lazár D
    Plant Cell Environ; 2024 Jun; 47(6):2240-2257. PubMed ID: 38482712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Located WHIRLY1 Interacting with LHCA1 Alters Photochemical Activities of Photosystem I and Is Involved in Light Adaptation in Arabidopsis.
    Huang D; Lin W; Deng B; Ren Y; Miao Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29112140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. x- and y-type thioredoxins maintain redox homeostasis on photosystem I acceptor side under fluctuating light.
    Okegawa Y; Sato N; Nakakura R; Murai R; Sakamoto W; Motohashi K
    Plant Physiol; 2023 Nov; 193(4):2498-2512. PubMed ID: 37606239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity.
    Chaturvedi AK; Dym O; Levin Y; Fluhr R
    Plant Physiol; 2024 Jan; 194(2):1059-1074. PubMed ID: 37787609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of NADP-malate dehydrogenase is vital for land plants under fluctuating light environment.
    Yokochi Y; Yoshida K; Hahn F; Miyagi A; Wakabayashi KI; Kawai-Yamada M; Weber APM; Hisabori T
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33531363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants.
    Michelet L; Zaffagnini M; Marchand C; Collin V; Decottignies P; Tsan P; Lancelin JM; Trost P; Miginiac-Maslow M; Noctor G; Lemaire SD
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16478-83. PubMed ID: 16263928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinhibition of Photosystem I Provides Oxidative Protection During Imbalanced Photosynthetic Electron Transport in
    Lima-Melo Y; Alencar VTCB; Lobo AKM; Sousa RHV; Tikkanen M; Aro EM; Silveira JAG; Gollan PJ
    Front Plant Sci; 2019; 10():916. PubMed ID: 31354779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis.
    Peng L; Shimizu H; Shikanai T
    J Biol Chem; 2008 Dec; 283(50):34873-9. PubMed ID: 18854313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.
    Allen JF; Santabarbara S; Allen CA; Puthiyaveetil S
    PLoS One; 2011; 6(10):e26372. PubMed ID: 22039472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits.
    Naver H; Boudreau E; Rochaix JD
    Plant Cell; 2001 Dec; 13(12):2731-45. PubMed ID: 11752384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic evidence for protein complexes between thioredoxin and NADP-malate dehydrogenase and presence of a thioredoxin binding site at the N-terminus of the enzyme.
    Braun H; Lichter A; Häberlein I
    Eur J Biochem; 1996 Sep; 240(3):781-8. PubMed ID: 8856084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CBSX2 is required for the efficient oxidation of chloroplast redox-regulated enzymes in darkness.
    Li Y; Zhang L; Shen Y; Peng L; Gao F
    Plant Direct; 2023 Nov; 7(11):e542. PubMed ID: 38028645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures.
    Tjus SE; Møller BL; Scheller HV
    Plant Physiol; 1998 Feb; 116(2):755-64. PubMed ID: 9489022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis.
    Baier M; Dietz KJ
    Plant Physiol; 1999 Apr; 119(4):1407-14. PubMed ID: 10198100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II.
    Bethmann S; Melzer M; Schwarz N; Jahns P
    Plant Direct; 2019 Nov; 3(11):e00185. PubMed ID: 31819921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.