These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 12794086)
21. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
22. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu JW; Hu M; Chai J; Seoane J; Huse M; Li C; Rigotti DJ; Kyin S; Muir TW; Fairman R; Massagué J; Shi Y Mol Cell; 2001 Dec; 8(6):1277-89. PubMed ID: 11779503 [TBL] [Abstract][Full Text] [Related]
23. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Li L; Xin H; Xu X; Huang M; Zhang X; Chen Y; Zhang S; Fu XY; Chang Z Mol Cell Biol; 2004 Jan; 24(2):856-64. PubMed ID: 14701756 [TBL] [Abstract][Full Text] [Related]
24. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129 [TBL] [Abstract][Full Text] [Related]
25. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. de Caestecker MP; Yahata T; Wang D; Parks WT; Huang S; Hill CS; Shioda T; Roberts AB; Lechleider RJ J Biol Chem; 2000 Jan; 275(3):2115-22. PubMed ID: 10636916 [TBL] [Abstract][Full Text] [Related]
26. Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Yang L; Wang N; Tang Y; Cao X; Wan M Hum Mutat; 2006 Sep; 27(9):897-905. PubMed ID: 16865698 [TBL] [Abstract][Full Text] [Related]
27. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. Chang CC; Lin DY; Fang HI; Chen RH; Shih HM J Biol Chem; 2005 Mar; 280(11):10164-73. PubMed ID: 15637079 [TBL] [Abstract][Full Text] [Related]
28. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. Mochizuki T; Miyazaki H; Hara T; Furuya T; Imamura T; Watabe T; Miyazono K J Biol Chem; 2004 Jul; 279(30):31568-74. PubMed ID: 15148321 [TBL] [Abstract][Full Text] [Related]
29. Identification and characterization of constitutively active Smad2 mutants: evaluation of formation of Smad complex and subcellular distribution. Funaba M; Mathews LS Mol Endocrinol; 2000 Oct; 14(10):1583-91. PubMed ID: 11043574 [TBL] [Abstract][Full Text] [Related]
30. Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization. Correia JJ; Chacko BM; Lam SS; Lin K Biochemistry; 2001 Feb; 40(5):1473-82. PubMed ID: 11170475 [TBL] [Abstract][Full Text] [Related]
31. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif. Makkar P; Metpally RP; Sangadala S; Reddy BV J Mol Graph Model; 2009 Apr; 27(7):803-12. PubMed ID: 19157940 [TBL] [Abstract][Full Text] [Related]
32. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling. Rodriguez C; Huang LJ; Son JK; McKee A; Xiao Z; Lodish HF J Biol Chem; 2001 Aug; 276(32):30224-30. PubMed ID: 11387330 [TBL] [Abstract][Full Text] [Related]
33. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Jones JB; Kern SE Nucleic Acids Res; 2000 Jun; 28(12):2363-8. PubMed ID: 10871368 [TBL] [Abstract][Full Text] [Related]
34. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Wu JW; Krawitz AR; Chai J; Li W; Zhang F; Luo K; Shi Y Cell; 2002 Nov; 111(3):357-67. PubMed ID: 12419246 [TBL] [Abstract][Full Text] [Related]
35. Crystal structure of a transcriptionally active Smad4 fragment. Qin B; Lam SS; Lin K Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180 [TBL] [Abstract][Full Text] [Related]
36. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Chacko BM; Qin B; Correia JJ; Lam SS; de Caestecker MP; Lin K Nat Struct Biol; 2001 Mar; 8(3):248-53. PubMed ID: 11224571 [TBL] [Abstract][Full Text] [Related]
37. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Long J; Matsuura I; He D; Wang G; Shuai K; Liu F Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9791-6. PubMed ID: 12904571 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Chou WC; Prokova V; Shiraishi K; Valcourt U; Moustakas A; Hadzopoulou-Cladaras M; Zannis VI; Kardassis D Mol Biol Cell; 2003 Mar; 14(3):1279-94. PubMed ID: 12631740 [TBL] [Abstract][Full Text] [Related]
39. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. Brown CO; Chi X; Garcia-Gras E; Shirai M; Feng XH; Schwartz RJ J Biol Chem; 2004 Mar; 279(11):10659-69. PubMed ID: 14662776 [TBL] [Abstract][Full Text] [Related]
40. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Wu RY; Zhang Y; Feng XH; Derynck R Mol Cell Biol; 1997 May; 17(5):2521-8. PubMed ID: 9111321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]